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ABSTRACT

Modeling the Minimum Energy State of the

Earh's Magnetotail

by

Markus S. Sorrells, Master of Science

Utah State University, 1993

Major Professor. Dr. W. Farrell Edwards
Department Physics

For a system that remains in thermodynamic equilibrium, stable equilibria are determined by

minimizing an appropriate potential energy function such as the Gibb's free energy. However,

when a system does not remain in thermodynamic equilibrium (Le. a radiating system), one

cannot use a potential function to derive a state of stable equilibrium. If we assume this is the

case for the earth's magnetotail, then we must come up with another method to determine stable

equifibrium. We conjecture that this will be a minimum total energy.

By combining Poynting's theorem with the Lorentz force equation and Maxwell's equations,

one can account for the energy advections into and out of a system containing a fully ionized

plasma, as well as for the energy fluctuations caused by changing electric and magnetic fields.

By minimizing the total energy equation representing an idealized model of the earth's

magnetotail, one should be able to calculate its stable equilibrium state.

Although the idealized minimum energy model presented in this paper depicts many trends

observed in the earth's magnetotail, this thesis concludes that more modifications are needed

before it becomes a useful tool for analyzing the earth's magnetotail. (140 pages)
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INTRODUCTION

Earth's Magnetotail

This thesis attempts to develop a model to determine if a minimum energy equilibrium state

establishes itself wiuln the earth's magnetotail. During quiet conditions, the earth's magnetotail

receives and ýtores energy from the solar wind. At periodic intervals, the magnetotail releases

all or a portion of this stored energy into the earth's ionosphere and interplanetary space in the

form of geomagnetic storms, substorms, and plasmoid ejections. At this point in time, no one is

quite certain how or why the magnetotail periodically releases its energy although there are a

couple of theories available. One theory suggests that the solar wind may deposit energy into

the magnetotail at a rate faster than the magnetotail can absorb it, causing the excess energy to

be discarded during the energy storage cycle. Another theory states that the magnetotail has a

finite energy storage capacity and when this critical level is reached, some unknown triggering

mechanism causes the magnetotail to release its energy. Whatever the case, this energy release

is probably the result of the magnetotail trying to establish an equilibrium state. It seems

reasonable that the magnetotail would ultimately be trying to reach an equilibrium state having

the lowest possible total energy. This thesis attempts to find out if the magnetotail releases

enough of its energy at one time to ever reach this minimum total energy state.

The minimum energy model developed in this thesis calculates the minimum energy profiles of

key parameters of the magnetotail such as magnetic field strength, ion and electron number

densities, temperatures, and bulk flow velocities. By comparing the model's profiles with those

observed in the magnetotail at the end of an energy release cycle, one should be able to

ascertain whether the model works or not. Certain insights to the earth's magnetotall energy

cycle may be gained if the model adequately describes the above situation. Before getting into

the minimum energy model, a brief background into the magnetospheric/tail physics and
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structure will be discussed in this chapter.

Magnetospheric/tail Models

Prior to the advent of space exploration, scientists had to rely solely on ground measurements

to observe and come up with theories to explain the structure of the earth's magnetic field. As a

result, early scientists pictured the earth's magnetic field as a perfect magnetic dipole (Fig. 1).

In 1931, Chapman and Ferraro brought the acceptance of a solar wind into the scientific

community (Akasofu, 1981). Solar wind plasma originates from the sun's corona and flows

radially outward at "supersonic speeds that vary between 300 to 800 kilometers per second

(Gosling, 1984). As the solar wind reaches the earth, it has a typical density of about 10

particles per cubic centimeter (Gosling, 1984) as compared to the 3 x 1019 particles per cubic

centimeter found in the atmosphere at the earth's surface. During solar quiet times, the energy

of the solar wind particles is normally a few eVs.

Closed Magnetic Dipole

FIG. 1. The original undisturbed model with magnetic field lines extending into a vacuum [Gosling,
1984].
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Scientists had to take into account the effects of the solar wind flow against the earth's

magnetic field. They came up with what is now called the closed magnetospheric model in

which magnetic field lines left one hemisphere of the earth and returned to the other

hemisphere and were modified by the solar wind flow into the shape depicted in Fig. 2.

This model worked relatively well for describing some of the magnetospheric processes that

were observed before the advent of space exploration. In 1955, a British geophysicist by the

name of James W. Dungey attempted to apply hydromagnetic theory to calculate and determine

the shape of the magnetotail (Carovillano et al., 1967). As it turned out, his calculations worked

fairly well on the dayside portion of the magnetotanl but it predicted that the magnetotail would

close off relatively close behind the earth with something like a Mach angle. Of course current

observations do not support this theory. As more magnetospheric processes were observed with

the use of satellites, it became apparent that the dosed magnetospheric model was not sufficient.

For example, it could not explain how solar wind particles gained relatively easy access to the

earth's polar regions nor could it explain the sharp outer boundary layer of the plasma sheet

which separated the anti.parallel magnetic field lines of the magnetotail.

Cloed lMgnte•osphtre

FIG. 2. A closed magnetospheric model in which the solar wind distorts the earth's magnetic field.
All the earth's magnetic lines start and end on the earth. (For simplicity, the tilt of the earth's axis
is not shown) (Gosling, 1984].
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In the early 1960's scientists discovered that the solar wind contained a magnetic field. Since

the sun has a dipolar magnetic structure, the solar wind carries "frozen" remnants of the sun's

magnetic field within its flow. This "frozen in" magnetic field is known as the Interplanetary

Magnetic Field or IMF. Due to the dipole nature of the sun, the IMF is either a sunward or anti-

sunward orientation. A heliomagnetic current sheet separates these oppositely aligned magnetic

fields, which prevents them from making contact and mutually annihilating one other. Due to

the rotation of the sun and the current sheet's 70 inclination Crascione, 1988) to the solar

rotational equator, the current sheet incurs a wavy structure depicted in Fig. 3. Because of the

wavy nature of this current, the earth's orbit passes through it at least twice during each solar

rotation. As the earth passes through this structure, the IMF will either have a northern or

southern component to it depending on whether the earth is above or below the heliomagnetic

current sheet. The acceptance of a magnetic field (or IMF) in the solar wind led scientists to

develop an open magnetospheric model. In this model, some of the magnetic field lines flow

from the earth out into interplanetary space instead of flowing back towards the earth at the

EARTH ORBIT
ABOVE
BELOW ----

FIG. 3. Wavy structure of the heliomagnetic current sheet due to the current sheet's inclination to
the sun's rotational equator [after National Research Council, 1981].
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opposite hemisphere (Fig. 4). This model is able to explain many of the phenomena observed

within the magnetosphere/tail that the closed model could not, such as how solar wind plasma

and energy are able to move into and through the magnetosphere (Gosling, 1984). In fact, this

model can also attempt to explain the dependence of the earth's magnetic activity on the IMF.

When the IMF points southward, as seen in Fig. 5(a), its magnetic field can easily merge with

the earth's own field. According to the model, magnetic merging is one of the primary processes

by which the solar wind transfers a portion of its mass/energy to the earth's magnetosphere/tail.

As a result, the earth's magnetosphere/tail is relatively active during southward IMF.

However, magnetic merging occurs less often when the IMF points northward (Fig. 5(b)).

This means the amount of solar wind mass/energy transferred into the earth's

magnetosphere/tail is reduced. As a result, the earth's magnetosphere/tail experiences less

geomagnetic activity when the IMP is pointing northward rather than southward.

Interplanetary Direction of
F sFeld Plasma Flow

P Terrestrial

Field

Open Magneiosphere

FIG. 4. An open magnetospheric model in which the terrestrial and interplanetary field lines
connect. (Tilt of the earth's axis is not shown) [Gosling, 1984].
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A *

(a) (b)

FIG. 5. The interaction of the earth's dipole magnetic field with (a) southern component of the IMF
and (b) the northern component of the IMP.

Even with all its good points, the open magnetospheric model does not explain every situation

within the magnetosphere/tail so most scientists today use a combination of the open and dosed

models to describe magnetospheric processes.

Magnetospheric/tail Physics

The "supersonic" plasma of the solar wind encounters the presence of the earth's

magnetosphere at a boundary referred to as the "bow shock" (Fig. 6). This encounter is

analogous to a shock wave created by an object moving at supersonic speeds through a fluid

medium. The region directly behind the bow shock is called the "magnetosheath! and forms a

physical boundary between the solar plasma at the bow shock and the magnetospheric plasma at

the magnetopause. As the solar wind particles continue to flow past the earth's northward

pointing magnetic field, they are.acted upon by the Lorentz force P - q ( 9 x A ) which

deflects the positive ions towards the dusk side of the earth and the negative electrons towards
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INTERPLANETARY
MEDIUM MAGNETOSHEATH

BOW MASNETOPAUSE TI

SOKM 'ANTL.'E BOUNDARY

OAYSIOE FIELD-ALIGNEDTALOB
BOUNDARY CURRENTS

LAYER

PRECIPITATION - MACNETOTAU.

WIND
PLASMA RADIATIONBETEt3

BELT REGION

MAGNETOSNEATH

BOW
SHOCK

FIG. 6. Diagram showing the strcture of the earth's magnetosphere system [National Research
Council, 1981].

the dawn side (Fig. 7). This force sets up a magnetopause current that follows the path taken

by the positive ions and flows around the outside of the magnetosphere and eventually merges

with the magnetotail current, which flows around the exterior of the magnetotail from dusk to

dawn as depicted in Fig. 8. The magnetotail current then merges with the current or plasma

sheet current (Fig. 9), which flows from dawn to dusk in the interior of the magnetotall. The

magnetotail and plasma sheet currents are enhanced by the earths magnetic field, which points



North 8

Return
Current.

Uagnetopau~e

Chapman-Ferraro

Solar
Wind ýWid •F - +e(V x B)

FIG. 7. Schematic showing how the Lorentz force creates the magnetopause curent [from
McPherron, 1991].

NJ

4 4,

FIG. 8. Flow patterns of the two principal current systems which determine the configuration of the
magnetosphere/tail [adapted after Axford, 1965].

sunward in the northern half of the magnetotail and anti-sunward in the southern half (Fig. 6).

The ring current, which constitutes the earthward most regions of the plasma sheet, is due to

drift of charged particles across the earth's magnetic field gradient. The drifts are charge

dependent so that positive particles drift westward and negative particles drift eastward
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1 /
Mg csi Solar

hoursdar E)pressure

FIG. 9. Cross section of the earth's magnetotail showing the primary directions of the magnetopause
and crosstail currents [following ASford et al., 1965].

(Fig. 10) producing a net westward current (Williams, 1987M.

The field align currents (FACs), also known as Birkeland currents, connect the earth's

ionosphere to the magnetosphere and interplanetary space. The net current usually flows into

the ionosphere at the morning sector, across the polar cap (Auroral electrojet), and out of the

sphere at the evening sector (Fig. 11). The magnetotail forms when the earth's magnetic

field lines are stretched, as far as 1000 earth radii or Re, downstream by the solar wind. The

process starts when the IMP and the earth's magnetic field merge and connect on the sunward

side of the earth near the magnetopause. The solar wind is then able to drag the interconnected

magnetic field lines from the dayside portion of the magnetosphere down the magnetotall to the

point where they reconnect (Fig. 12) (Sibeck, 1990).

As stated above, hydromagnetic theory was not able to explain the long nature of the

magnetotail. The problem was that it assumed the solar wind slid smoothly along the boundary

of the magnetotail without agitating it. Scientists soon concluded that there had to be some

force exerted on the tail to allow it to be dragged out for such a distance. One explanation is

that there must be a pressure p1 within the tail region which tends to push out with just enough
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/,Ring Current.
N Intensity Contours

GAdin Draiien
DriftDriIt

+ Ion

FIG. 10. A view of the dayside plasmasphere showing the creation of a westward ring current by
particle drift [from McPherron, 1991].
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o 3 4f S

P

FIG. 12. Schematic showing magnetic merging process [Aeronomy Lecture, 1992].

pressure to equal the inward magnetic tension (or pressure) of the tail (Caroviliano et al., 1967).

This effect is expressed in Eq. (1).

B'" (1)

However, there is also a pressure outside the tail P2 , which combines with the inward magnetic

tension of the tail to push against the internal pressure. Therefore, in order for a transverse

equilibrium condition to exist, the total pressure inside the tail p, must balance both the inward

magnetic tension of the tail plus the pressure outside the tail p2 . This pressure balance is

expressed in Eq. (2).

7B(lp1 = .÷P, • (2)
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Enhanced mixing of the solar wind plasma with the magnetopause boundary is also used to

explain the magnetosphere's long tail. It is thought that this mixing could be due to surface

instabilities on the magnetotail boundary or other unknown mechanisms. Whatever the cause,

this mixing would allow particles from the solar wind to penetrate into the tail at large

distances. The inertia of this penetration could then be the mechanism that stretches the

magnetotail out to the long distances that we observe. The solar wind penetration can also be

the source of the tension along the magnetic field lines. Calculations have shown that only

1/10th of the total solar wind momentum is required to produce the necessary shape observed

and tension required within the earth's magnetotail (Carovillano et al., 1967). It is these

calculations which have caused the latter explanation to be widely accepted.

In order for solar wind plasma to interact within the earth's magnetic field, it must first get

into the magnetospheric/tail system. One way this can happen is through the magnetic merging

of the earth's magnetic field with an IMP as described above Crascione, 1988). As the

interconnected magnetic fields are pushed along by the solar wind, some of the solar wind

particles are dragged along. When the magnetic field lines reconnect, a portion of the field line

gets propelled earthward by the inward tension of the magnetic field, thereby injecting some of

the trapped solar wind particles into the earth's magnetosphere (Fig. 12).

Solar wind particles can also get into the earth's magnetotail through diffusion across the

magnetosheath boundary layer. A portion of the solar wind particles get through the bow shock

and are able to diffuse through the magnetopause as they flow along it. Particles flowing across

the top and bottom of the magnetosphere must travel through the magnetotall's lobes before

they reach the plasma sheet (Fig. 13). Particles flowing along the equatorial region of the

magnetosphere, also known as the Low-Latitude Boundary Layer (LLBL), are able to diffuse

through the magnetopause and enter the plasma sheet from the sides (Fig. 14) (Lundin et al.,

1991). Once the solar wind plasma is inside the magnetosphere/tail system, it initially flows
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Lobe/Plasma Mantle Source

FIG. 13. Diagram showing access of solar wind particles through the northern and southern
portions of the magnetosphere [Pilipp and Morfil, 1978, Cowley and Southwood, 1980].

Low-Latitude Boundary Layer Source

FIG. 14. Access through the LLBL (Heikkila, 1982, Eastman et al., 1985].

FIG. 15. Sketch of the equatorial section of the earth's magnetosphere looking from above the north
pole showing idealized plasma flow [after Aicford, 1964].
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anti-sunward in the magnetosheath. Most of the plasma within the magnetosphere moves into

the plasma sheet located in the equatorial region of the magnetotall. Once in the plasma sheet,

the plasma flow is generally sunward (Fig. 15) from the earthward side of the magnetic field

reconnection point (about 100 Re). The plasma flow within the plasma sheet is due to either

magnetic field line reconnections or the inward solar wind pressure on the earth's magnetic

field.

As the plasma begins to flow earthward from the magnetic field reconnection site, several

things happen to it. First, the plasma again experiences the Lorentz force P - q ( 9 x A ),

which forces the positive ions to flow towards the dawnside of the magnetotail and the negative

electrons to flow towards the duskside. The net effect of this action is to set up an electric field

across the magnetotagl which points from dawn to dusk (Fig. 16). Another way of looking at

this is, since the plasma can be considered a collisionless medium, its motion sets up an electric

field which satisfies the equation : - - 9 x A.

Since this plasma can be considered collisionless, it also experiences an Pl x fl (electric field

vector crossed with the magnetic field vector) drift (Hones, 1986). Near the earthward side of

the reconnection site, the earth's magnetic field has a strong northerly component to it. As a

result, the JI x 11 drift directs the plasma towards the earth (Fig. 17). Midway between the

reconnection site and the earth, the J9 x A drift forces the plasma towards the equatorial

regions of the magnetotail due to the anti-parallel orientation of earth's magnetic fields at this

point (Fig. 18). As a result of this action, the bulk of the magnetotail's plasma and energy is

tied up within a relatively thin equatorial region called the central plasma sheet. This is where

key processes such as energy storage and dissipation usually take place.
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I

MAGNTOSHERMBCJPTIC PLANE

FIG. 16. Schematic showing the electric field set up as a result of the Lorentz force and
fl= -i x ].
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FIG. 17. Schematic showing the earthward x 16 drift.
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FIG. 1& Schematic showing the equatorial 19 x A drift.

Magnetotail Energy Storage and Dissipation Mechanisms

The solar wind/magnetospheric interaction basically converts the solar wind's kinetic energy

into the electrical and magnetic energies observed within the magnetosphere/tail. The solar

wind puts energy into the earth's magnetosphere/tail system at a approximate rate of 1019

ergs/sec (Lanzerotti and Krimigis, 1985). It appears that the earth's magnetospheric system has

two models (Fig. 19) to describe the way it processes the energy it receives from the solar wind.

One way is by direct dissipation of the solar wind energy into the earth's upper atmosphere

where it manifests itself in the form of auroral storms (Le. northern lights). This process is

called the direct driven model and is depicted in Fig. 19(a) (Akasofu, 1987).

The other way the magnetospheric system handles the solar wind's energy is by storing it and

releasing it periodically. This is called the driven reconnection model and is depicted in Fig.

19(b) (Akasofu, 1987). This model is analogous to a dripping faucet (Fig. 20) where 'solar wind

plasma seeps into the magnetosphere all along its boundary, accumulating in the tall until a
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(a)

(b)

FIG. 19. (a) Schematic of how solar wind energy was thought to be transported to the earth. (b)
Current view of how solar wind energy is thought to get to the earth (Akasofu, 1987].

E" OhrMflS IWO-' ýAfl

FIG. 20. Diagram showing how the magnetosphere's energy storing and release processes resemble
a faucet drip [Gosling, 1984].
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portion breaks off like a swollen drop of water from a faucet" (Gosling, 1984, p. 33). In this

process, a portion of the stored energy is shed while another portion is directed towards the

earth's poles. The shedding process has been directly observed in comets but not in the earth's

magnetotail.

Most of the solar wind's energy, and particles, appears to be stored within the central plasma

sheet of the magnetotail. Observations indicate, however, that plasma sheet energies are in the

keV range while solar wind particles are only in the eV range. That means there must be some

mechanism within the magnetotail which somehow accelerates the low energy solar wind

particles to the higher plasma sheet energies observed. Magnetic field reconnection may be one
possible mechanism. Scientists have predicted that when two anti-parallel d lines of the

magnetotail lobes come into contact, they "explosively" cancel each other out with a resulting

release of energy in the 5 key range. This energy might be transformed into the high plasma

kinetic energy observed within the central plasma sheet (Tascione, 1988).

Magnetotail Equilibrium/Steady State Condition

As it interacts with the solar wind, the magnetospheric/tail system appears to be trying to

establish an equilibrium when it periodically releases some of its excess energy during magnetic

storms. It seems possible that the magnetospheric/tail system may be trying to reach an

equilibrium state having the lowest total energy. This is the assumption of this thesis and will

be discussed in detail later.

In order to test this assumption, one needs to have measurements of the magnetotail while it

is in a steady-state equilibrium condition. Unfortunately, due to the constant influx of energy

from the solar wind, this condition rarely exists, but it may exist for some special cases. One

case, as mentioned above, may exist for a brief period of time immediately after a magnetic

storm when the magnetotail has released its excess energy. Another case may occur when the
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earth's magnetic field is exposed to a large northerly component of the IMN for an extended

period of time. When the IMP is pointing northward, the solar wind has minimal interactions

with the earth's magnetic field. By looking at the specific parameters within the magnetotail

system, one may be able to determine whether the system is in a minimum energy equilibrium

state or not. This thesis explores this possibility.

Chapter II of this thesis explains a technique for finding the total minimum energy of a system

not in thermodynamic equilibrium. This chapter discusses how the "Calculus of Variations" is

used to determine which systems of equilibrium states are also minimum energy states.

Chapter III describes an idealized magnetotail model used in this research and discusses how

the energy minimizing technique described in Chapter II is applied to it. Also, this chapter will

explain what assumptions were used to create the idealized model and why.

Chapter IV addresses the computer program used to solve a series of differential equations

which evolved from the calculus of variations technique. It also describes the model outputs and

any associated graphs and plots.

Chapter V compares the model's results with real data from the actual earth's magnetotail. If

the results approximate typical conditions observed in the magnetotail, then we will be able to

say that we will have a working model for describing the earth's magnetotail energy state while

it is in equilibrium. If, on the other hand, the model does not adequately simulate the

magnetotail's energy state, then we will have eliminated one possible method for describing the

earth's magnetotail energy structure.

Chapter VI draws conclusions based upon the results of this research and points out possible

areas for further research.
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Chapter II

MINIMUM TOTAL ENERGY

Systems in Thermodynamic Equilibrium

If a system is completely isolated from its surroundings, it is in thermodynamic equilibrium.

Determining stable equilibria of systems in these states is done by minimizing the appropriate

potential energy function for that thermodynamic equilibrium. Several potential energy

functions and their specific uses are listed below (Adkins, 1968).

TABLE I. Potential Energy Functions.

Function Description

Enthalpy - can be used for determining the maximum
amount of heat content available within a
given system.

Helmholtz function - can be used for determining the maximum
amount of mechanical work which can be
extracted from a given system.

Gibbs function - can be used for determining the maximum
amount of free energy available within a
given system.

Therefore, in thermodynamic equilibria, minimizing a particular potential energy function

yields a stable equilibrium state.
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Systems Not in Thermodynamic Equilibrium

But what if the system does not remain in thermodynamic equilibrium. Such is the case

where radiation is present (Pippard, 1957). We will assume that these equilibria have minimum

total energy rather than minimum thermodynamic free energy (or potential energy). For such

systems, we will attempt to find their stable equilibria by using calculus of variations to

determine their minimum total energy states.

The first step Fpior to using this technique is to find an equation which adequately describes

the energy of the system in question. The total energy, U, of our system, can be represented by

adding up all of the applicable energy contributions, assuming that there are no dissipation and

advection terms:

Total aee Eeti Kitc- ÷ Psun• .(3)
ofa ( U) - d Field + Field + Presmw.(3

ofer aog EnegB=yB= Tetms

The next step is to identify the constraining equations which apply to the problem. These

include Maxwell's electrodynamic equations and equations of state for the plasmas in question.

The final step of this technique is to determine which functions appearing in the energy

equations, Eq. (3), within the limits imposed by the constraint equations, yield a minimum total

energy. These functions include variables such as magnetic fields, electric fields, particle

densities, etc., which are dependent upon the independent space variables. One could randomly

insert different functions for each of the dependent variables in Eq. (3), subject to the

appropriate constraints, until the lowest possible value for U was reached. Unfortunately, this

approach is very tedious and time consuming and would not guarantee, with any certainty, that
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another combination of values may not generate an even lower value for U. It is due to this

uncertainty that another technique must be used to find the lowest possible value for U, or

minimum total energy. The technique uses the calculus of variations; it works as follows.

Calculus of Variations

Suppose, for example, we want to find the minimum total energy of a given system. Since the

minimum total energy of a system is a special case of the system's total energy, we will look at

the total energy first without restricting it to being a minimum. To illustrate this method, let us

assume the total energy of the system can be represented as a function of two dependent

variables, A and B -- A/8z, which are functions of one independent variable z. With this in

mind, we can express the total energy of a given system as,

TOTAL (4)
ENE y(Y U) - ff(A(z),B(z),z)dz.

In order to find the minimum total energy of the system, we must determine what functions A

and B in Eq. (4) must be in order for U to achieve the lowest value possible. The trick is to

discover, with some degree of certainty, what these functions are. Remember, the values of A

and B may be constrained by one or more external equations as well as boundary conditions that

may be imposed on the system. Therefore, in order to find A(z) and B(z), we must use the

calculus of variations.

To use this technique we first assume that we know what the 'correct' values of A and B are,

and express them as Amin and Bmin. Substituting these new variables into Eq. (4) yields
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MIN&IMUM
TOTAL (U) f ff(A,,,(z),B.,.(z),z)dz. (5)
ENERGY

But how do we determine what the values of Anin and B.,s are? To find out, we select some

arbitrary functions, a(z) and b(z), multiply them by an infinitesimal dimensionless parameter a,

and add them to A., and BI to generate two entirely new functions, A and U.

A'(z,a) - A.,.(z, 0) +aa(z);
B'(z,a) - B.,.(,O)÷ab(z). (6)

One of the conditions of the calculus of variations is that all values of the 'correct' functions,

Amin and Bmnn, must be the same as those of the new functions, A' and B, at the systems

boundaries or endpoints. In this case, the endpoints are at the top, z1, and bottom, z%, of the

system-

Rewriting Eq. (4) using the new functions A(za) and Ef(za) gives us the following

expression,

TOWalU(6) -f f(A'(zr.&) B'(z~a). z)dz. (7)

By making aa and ab equal zero in Eq. (6), we see that A' and E in Eq. (7) will have the same

values as Am, and Bmi in Eq. (5) and the system will be in a minimum total energy state.

We begin the process of minimizing by looking for cases where the derivative of U with
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respect to a equals zero. Assuming dU/d a is a continuous function, the system will be in an

equilibrium energy state when dU/da equals zero.

a A f aBU(4) - f MA + )d_ & o. (8)Ta fvaA' & Os

Unfortunately, it is impossible to know for certain whether a particular equilibrium coincides

with the system's minimum total energy state without doing any further tests. The reason for

this is that a system may have many different equilibrium states (Fig. 21).

Another way to insure that an equilibrium state coincides with a system's minimum total

energy is to take the limit of Eq. (7) as a goes to zero.

SU(s) = liraff(A', B', z)dz"
a-O a-0o "9

"= f(A,+ &a, B,+ ab, z)dz

We can see as a goes to zero, Eq. (9) begins to look like the minimum total energy equation

(Eq. (5)). Therefore, in order to find the equilibrium state of a system which also coincides with

its minimum total energy (U), we need to apply both the partial differentiation and limit to the

energy equation at the same time as shown in Eq. (10) and Fig. 22.

tim 0["o -U(s)] o- 0 . (10)
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FIG. 21. Diagram showing that a system can have many equilibrium states (stable and
unstable).

du(6) 0

1 6

0 0

FIG. 22. Since the value for U( a > 0 )wil always be greater than U( a 0 )we can be
assured that we will find the equilibrium condition with the least possible energy when a goes
to zero.
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Equation (10) must hold independent of the choice of functions a and b in Eq. (9) because as

a goes to zero,X and 9 take on the values of Amn and Bmn. By taking the limit as a goes to

zero, however, we eliminate the values of the arbitrary functions, a and b, so how can we vary

them so that we are left only with - Amin and N = Bmin? The answer is to use integration

by parts (Goldstein, 1980).

Integration by parts allows one to factor the arbitrary functions, a and b, out of Eq. (6) and

leave only a differential equation within the integral based on the values A and Br. Because

V = OA'/az, the second integral of Eq. (8) is

v(--K )dz dzJ faB = Of IaAN

now we integrate by parts

Since the correct and arbitrary functions must be equal at the system's endpoints/boundaries, z1

and z2 , the partial derivative of A with respect to a in the first part of Eq. (11) will disappear,

leaving us with

d fl d af aA 1
f -, /(-- M %O dz (12)
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Therefore,

af U))-fII ta'dz
aA' dOm a~'8za

or,

a.U(C) - f%((F(z)X2.-))dz. (13)

where,

F(z) _ r d af (14)
aA' dz aB

We now have an expression F(z) that is written in terms of A' and if only. Since the partial

derivative of A with respect to a can be any arbitrary value, F(z) must be equal to zero in order

to satisfy the condition we made in Eq. (8). Therefore, by solving the differential equation F(z)

- 0 for A' and if, we are able to calculate the minimum total energy of the system F(z) - 0 in

Eq. (14) is called the Euler-Lagrange equation. This thesis will apply this method to an idealized

model of the eath's magnetotail and compare the results with real data of the earth's actual

magnetotail.
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Chapter III

MAGNETOTAIL MODEL

Model Description

The model we use in this thesis to calculate the minimum total energy of the plasma sheet

within the earth's magnetotail is depicted as a rectangular slab (Fig. 23) of infinite length and

width and a finite height, h. The axes of this model magnetotail are defined by a right-handed

Cartesian system where the positive x-axis, which represents the length of the slab, points

towards the sun. The y-axis, which represents the width of the slab, is directed perpendicular to

the x-axis in the duskward direction. Finally, the z-axis, which represents the height of the slab,

points northward, perpendicular to both the x and y axis.

By using some key assumptions and applying an appropriate set of equilibrium equations to

this magnetotail model, we should be able to calculate its minimum total energy. Comparing

the results of the model's calculations to certain parameters observed in the plasma sheet of

F0G MODEL OF DARMwnS MAso ode TAIL
E.ARTH,/

FIG. 23. Drawing showing the layout of the magnetotail model.
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the earth's magnetotail during quiet (steady state) conditions will help determine the validity of

this model.

As mentioned above, several assumptions are used in the model to keep it within the scope of

this thesis. The assumptions used in the model are as follows:

a) System is in a steady-state condition (d/dt = 0).

b) System is in equilibrium.

c) Particie number densities, ions (nl), and electrons (n2 ) vary in the z direction only.

In other words, the particle number densities remain constant within the x-y planes.

d) Ion velocities are restricted to the x-y plane to keep previous assumption true.

e) Only one species of particles (ions or electrons) moves, the other remains stationary,

only ions possess velocity. This assumption is used to simplify calculations within this thesis.

f) The x and y components of the electric field equal zero (Ex = Ey = 0). Only the z

component of the electric field has a value which varies only in the z direction (Ez(z) - value).

Without this assumption, the ions, within the model, would experience a continuous acceleration

within the infinite x-y planes due to a changing electric field. This condition would eventually

cause the ions to reach an infinite velocity, an unrealistic situation.

g) The y and z components of the magnetic field equal zero (By = Bz = 0). Only the x

component of the magnetic field has any value and this value varies only in the z direction

(Bx(z) = value). Thi y and z components of the magnetic field are assumed to be zero because

the model is approximating the center of the earth's magnetotail near the midnight sector. In

this region of the earth's magnetotail, the magnetic field lines are very nearly parallel to the x

axis with negligible y and z components.

h) Polarization and magnetization of the plasma are assumed to be negligible OM = 0,

P =0).

i) The plasma within the magnetotail model is fully ionized.
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By using these simplifying assumptions, we are left with a very simple or zero order model

which may not include all the necessary details to adequately describe the process observed

within the central plasma sheet of the earth's magnetotail.

Magnetotail Model's Total Energy Equation

As stated in Chapter II, we must develop a total energy equation to describe the model system

above which is not in thermodynamic equilibrium. To do this, we must determine what energy

terms we want the total energy equation to have. Since we are attempting to model a region

where electric and magnetic fields are prevalent, it seems logical that the total energy equation

should contain terms describing the energy changes associated with these fields. We also need a

kinetic energy term and an energy term that account for moving plasma particles (ions or

electrons) and kinetic pressures found within the earth's magnetotail. Therefore, we want to

develop a total energy equation for the model system that has the following form:

E Field B Held Kinetic Energies

Total f Ew neg Ener ASo ted
(Pe + Per + Per + with )a
Unit Unit Unit Kinetic
Vol Vol Vol Pressure

Now we need an expression for each term in the total energy equation shown above. We can

get expressions for the electric and magnetic field energies by combining Poynting's theorem

with Maxwell's equations which results in the expression shown in Eq. (15).
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EnrymecazcjhegB•rgy Eledrwna Power Be
Magnete Ac PowChan~ge - Field Strength + per +

per Chage Per Unit Vol Unit vP
Unitunit Tie n

d ", f . _ + _ B2  + f f , a&
at v 2 2pe O p0

where,

U = Total Energy of a System;
g = Electric Field;

= Magnetic Field;
3 = Electric Current,

= Permittivity of Free Space;
= Permeability of Free Space;

S= Unit Volum e;

a = Unit Aela.

It is standard practice to define the e0E2 /2 and B2/2fO terms in Eq. (15) as electric and

magnetic field energy densities, respectively. These can be used in the total energy equation.

We can also rewrite the energy advection term in Eq. (15) in terms of kinetic energy.

Substituting these expressions into the total energy equation yields:

BE eld B Field Kineft Energie
oety alg Energy Assoted

B =V v( Per + Per + Per + with )or,

unit unit Unit Kinetic
Vol Vol Vol Presure,j2B 2  "•2 + . )

U . r ( _ + = + )O,
2 2po 2 (16)
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where,

n = Particle Number Density,
,= Ions;

n Electrons;
m = Partride Mass;
q = Particle (Ion/Electron) Velocity;,
c = Adiabatic Constant;,

y = Ratio of Specific Heats.

The last term of the total energy equation, CnD, which accounts for the kinetic pressure found

within the earth's magnetotail system, is derived from the Perfect Gas Law.

PV ' (.•-)(R)(T) - (n)(k)(T);
NA

P (M)(R-)(T);
V NA

P = (n) (k) (T);

where,

p = Pressure;
V = Volume;
R = Universal Gas Constant;,
NA - Avogadro's Number;
T = Temperature (in degrees Kelvin);
n - Number Density;,
k = Boltzmann's Constant.

Assuming we have adiabatic conditions, we can say that the internal energy of a system is equal

to the energy extracted from the system by the performance of work (First Law of
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Thermodynamics).

Au = -W.

However, the internal energy change for any process for an ideal gas can be rewritten as,

Au - n Cv AT,

where Cv is the heat capacity of a system at a constant volume. In addition, the variable

representing the performance of work can be rewritten as,

w - PAV,

where we assume that the pressure P remains approximately constant, for a very small change in

volume eV. Substituting these new expressions into the thermodynamic equation yields:

nCvAT - -PAV.

Now we want to write the above equation in terms of temperature and volume only. To do this

we begin with the following form of the perfect gas law,
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- nRT
V

and substitute it into the rewritten thermodynamic equation yielding:

nRT

nCvAT - -( )AV;
V

AT R AV . - C v) AV - AV
-= 1 -(
TCV V CV V V

Integrating the above expression yields:

(T)(V)?'1 - Coasnta;

(!--V- ) ( v) - o~nsuum ;
nR

(PV)(V)"'• - Caastamt(nR);

(P)(V)' - Coastmt;

but,

V R)(m)(T).

NA (P)

(1 P
(k) (P)

(n"=
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therefore,

P( V)V - Co4AtW:

P((n)'l)T = Camtant;

P(n)"T - osn;

P - (n)T - CAT

For computing purposes, it is easier to deal with dimensionless equations than those with

dimensions. In order to make Eq. (16) dimensionless, we redefine the dependent variables in

such a way that each energy term becomes dimensionless. This has the same effect as setting

m - 1;
q -1

-o 1.

which gives us the following equation,

U f E( ÷ BCT) d. (17)
' 2 2 2

It is important to note here that the dependent variables in Eq. (17) are dimensionless and are

not the same as the dimensioned variables shown in Eq. (16). It will be shown later in this

thesis that by multiplying the dimensionless variables in Eq. (17) by an appropriate scaling

quantity, we can end up with the dimensioned variables shown in Eq. (16). Therefore, unless

specified, the dependent variables presented in this paper are dimensionless.
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In order to account for the two different particle species, ions (nl), and electrons (n2 ), we

must apply some of the assumptions discussed earlier in this chapter to Eq. (17). They are as

follows:

E O. 0, EFld only has a z component);
By .B,, . 0, (B Fld only has an x component);
vs W 0, (No vertical velocities);

nV. - 0, (Electron velocities are zero).

Applying these assumptions to Eq. (17) yields:

U f2 lv2 Jv2u v + n n , , •
2 (18)

Rewriting Eq. (18) in an expanded form gives us Eq. (19). This new equation represents the

total energy, U, of the model magnetotail system described earlier in this chapter. For the

remainder of this thesis, Eq. (19) will be referred to as the total energy equation.

h2 2 D nl 2 2v2

f - fhf-f" (EL +! - --- +C,+. )E & (19)
~0~- 2 2 2 2

In order to come up with the lowest possible value for the total energy, U, of the model

system, we must first find the minimum values of each of the terms in Eq. (19). Of course one

way to do this would be to arbitrarily set each term in Eq. (19) to zero and make the total

energy, U, of the system equal to zero, but this would depict a very unrealistic situation in the
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real world.

Since we are looking for a minimum total energy of a system in equilibrium, the variables

within Eq. (19) must be governed by one or more equilibrium equations. These equilibrium

equations, in turn, will be constrained to some degree by conditions outside the system.

Therefore, a proper set of boundary conditions must be defined along with the appropriate set of

equilibrium equations. By having the appropriate set of equilibrium equations and boundary

conditions, we will be able to define a range of values (Appendix C) for each term in Eq. (19).

Equilibrium Solutions

Maxwelf's Equfilium Equations

The equilibrium equations derived from Maxwell's equations are used to govern/restrict the

electric and magnetic fields defined within the model system. The first of these equilibrium

equations is Gauss' Law of Electric Charge and is expressed as

v. - I ÷ (20)
ax ay O

We know the total charge density in Eq. (20) can be written as

m W III÷ +q)n,).(-q) () al -n (21)
tng E. (21 i Vol the o lo a- u

Therefore, by substituting Eq. (21) into E~q. (20) and applying the following assumptions,
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E. E, - 0;

we end up with the following expression:

n, (22)

Eq. (22) provides us with the first equilibrium equation derived from Maxwell's equations which

governs the model magnetotail's electric field and particle number densities.

The second equilibrium equation derived from Maxwell's equations is Faraday's Law of

Induction and is expressed as

Vxl -- a ,

-( 8 . ~)j
5-y a&

÷(aE, a(3S a• -. -) 9 " 2
& 0-Y

Using the assumption that the z component of the electric field only varies in the z direction

(Ez(z)) and that the model system is in a steady state, we can see that Eq. (23) reduces to
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V x:9 - o. (24)

The third equilibrium equation derived from Maxwell's equations is Gauss' Law of Magnetism

and is expressed as

- +- 0 , (25)

which is covered by the assumptions previously mentioned. This equilibrium equation states

that magnetic field lines do not start or stop in space.

The final equilibrium equation derived from Maxwell's equations is Ampere's Law and is

expressed as

aB +--•) +( ) ( )B;V 1 - (
ay & aOx ax ay (26)

Using the assumptions that the y and z components of the magnetic field equal zero (By = Bz =

0), the x component of the magnetic field varies in the z direction only (B8(z)), the polarization

and magnetization aspects of the electric and magnetic currents equal zero ( =- P = 0), the

permittivity of free space is dimensionless (pi0 - 1), and the system is in steady state

(d/dt = 0), we can rewrite Eq. (26) as
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It• - p 9, n, -p • -j v i- +( ÷ ,, v÷,,27)

At this point, we use one of the model's assumptions that electrons (n2 ) have no velocity.

Normally when considering velocities due to :9 x A drifts, both the ions and electrons within a

plasma drift. However, results from other works attempting to model the Venus flux ropes

indicate that models, such as the one presented in this paper, may work better by keeping one of

the species of particles stationary (private conversation with Dr. Edwards). With this in mind,

combining like unit vector terms in Eq. (27) yields

nv, (28)- - "iv,.

This expression provides us with the second useful equilibrium equation derived from Maxwell's

equations. This equation governs the model's magnetic field and ion velocities (or kinetic

energies).

In summary, the equilibrium equations derived from Maxwell's equations are shown below.

V - g -. -. -;n

Vx A - 0; (29)
v~ -0;

V.f~~ 0.

V niv,.
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Klndeforce Equilibriuzm FEquations

The equilibrium equations derived from the force equation are used to govern/restrict the

idnetic energies and number densities of the particles contained with the model magnetotail.

The force equation is expressed as follows:

P - mi. (30)

However, since we are dealing with a specific volume, we need to express the force in Eq. (30)

as a force per volume (Eq. (31)).

P - (31)
vol vol

Rewriting Eq. (31) so that I represents the force per volume and p. represents the mass per

volume, we get

I i p . (32)

However, we also know

Im ,= Formc ÷ P+emssre Gradient Fowe

I] = ,(-Vx•) - VP; (33)
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and,

m (+q)(n), ÷ (- ) + N - Total nmtnbi

Pm N - ofpaicles (34)V'per unit vol,

and the acceleration is given by the convective derivative,

I - (-2 +( -V)).(35)
at

Applying Eqs. (33, 34, and 35) to Eq. (32) yields the following equation(s).

I (P. )( ;

(p=(•,fx•)-at -( )(+f-~ )36)

But according to Eq. (34), Qm=N, therefore Eq. (36) can be written as

a,

(N)(E+Vx•)-(VV) x (N)( +(7.V) ). (37)
at

Applying the Perfect Gas Law (P =nkT = Cii') to the pressure gradient force in Eq. (37) yields
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(N) ( 9 V x A) - (Cy (N)T-' V(N))

-(N)(- ÷(2-V) ). (38)at

Dividing both sides by the total number density (N) yields

a',

(i+9x i) -(Cy(N)T- 2 V(N)) - (- (V-V)V). (39)

Using the assumption that the electric field has only one component z, which varies only in

the z direction, we can say

A - (E 2 )t. (40)

Since we have also assumed the y and z components of the magnetic field equal zero (By =Bz

- 0) and the x component varies only in the z direction (Bx(z)), we get the following

equation(s):

Sx 1; (vpB - vB, ) i

+ ( vB 1 - v.B. )

+ ( v B. vB. I
-(-v1 B. )1(41)
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Since the pressure gradient force only varies in the z direction in this model, we get

(Cy (N) 2 V(N)) = (Cy(N)-2 (N))i. (42)

Looking at the right-hand side of Eq. (42) only, we can derive the following expression

(2- + ( .V)V) V (0 + (V.V)V) ,0 0. (43)
at

Combining Eqs. (39, 40, 41, and 42) into Eq. (38) yields

(E.) I -(vB.) I (Cy ( N -a ( N I= 0. (44)

Rewriting Eq. (44) so that the change of number density with height is on the left side of the

equation, we are left with the following scalar expression:

a (N) M ( -L(N) 2-)(E.-vB 3 ). (45)
& CY

Since the values for the ion or electron number density are (transforming to dimensionless

variables)
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Nj. - (+q)(u 1 ) -(+)( ); (46)

Nwa., -- (-q)(;) =(-1)(n);

they can be substituted into Eq. (45), giving us an expression for the change of the ion number

density across the magnetotail from the southern to the northern boundaries.

a(nn) +( 1 )2-T EC-vB 47)S = + ( ,,, (n))(E, -v..

Note that we have assumed the electron velocities are zero. Using the same steps described

above, we can derive an expression for the change of the electron number density across the tail.

a(%) . _(1_(n2)2-T)(E)" (48)

az cy

Therefore, we have a set of equilibrium equations (Eqs. (47) and (48)), derived from the force

equation, which governs the change of ion and electron number densities across the tail for the

model magnetotail. Summarizing, the force equilibrium equations are

a n t ) + I( n ) 2 - T . V&__ " _(- 4.((n -vB 1 )

az (49
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At this point, we have a set of equilibrium equations which constrain the values of the terms

within the total energy equation (Eq. (19)). We must now specify the boundary conditions.

Additionally, we must add another condition which will prevent the particles (ions and

electrons) contained within the model system from arbitrarily changing species. These

conditions are discussed below.

Boundary Conditions

Equilibrium equations alone will not restrict the value range for each of the terms in the total

energy equation (Eq. (19)). Their values face restrictions on the boundaries of the model

system. Since the model system only has boundaries on the top and bottom, boundary

conditions will only be applicable at these locations.

Number Density Boundary Conditions

For this model, it is assumed that charged particle density (ion or electron) outside the system

is negligible compared to the number densities inside. Therefore, we can see that the particle

number density inside the model must approach zero as one gets closer to the top or bottom

boundaries of the model system. We must have a set of boundary conditions which depict this

situation. Because boundary conditions on nI and n2 are not specified, we must establish

boundary conditions on the corresponding Lagrangian multipliers, which will be introduced and

discussed later. These particular conditions are:

2(O)- 0; 1(h)- 0;
12,(O) =f 0; •()= 0.
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Eectric Field Boundary Conditions

Unlike the charged particle number densities, the model assumes there is no electric field

outside the model system. This means that the electric field must equal zero at the boundaries

of the system, which happens to be the top and bottom planes of the model system. The

boundary conditions which restrict the equilibrium equations governing the model's electric field

are depicted below.

E 2 (O) - 0; E.(h) - 0. (S1)

Magnetic Field Boundary Conditions

Unlike the charged particle number densities and the electric field, the model does assume a

substantial magnetic field does exist outside the model system. Therefore, the magnetic field

strength just inside the model's boundaries must equal whatever magnetic field strength lies just

outside the boundary. The boundary conditions which depict this situation within the model are

as follows:

B.(O) - 0; B.(h) - +Bo. (52)

Particle Conservation Equations

These equations are used to ensure the number density of the individual species (ions and

electrons) contained within the model magnetotail remains conserved. So far, we have had

Maxwell's equations, which only guarantee that the sum total of the charged particles within the

model system will remain conserved (Eq. (22)). In other words, a charged particle (proton or
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electron) will not suddenly appear/disappear within the model system without advection. These

equations ensure that individual particles within the model do not suddenly change species, that

is, a proton becomes an electron or vice versa. Before we derive these particular conservation

equations, we need to define the following variables.

= Total Flux of Charge Particles through the
Surface of a Volume.

no = Average Number of Charged Particles per Unit
Volume.

d• = Unit Volume.
da = Unit Surface Area.

I = Length of Model Volume.
w = Width of Model Volume.

h = Height of Model Volume.

We want to get an expression that shows the total sum of a particular particle (ion (nj) or

electron (n2 )) over a given volume is equal to the average number density (no) multiplied by

the dimensions of the volume. These expressions are shown in Eqs. (53 and 54).

fv nt d- -, fv(n.)d , (-zn)hlw, (53)

or,

= a. )d; (;)hlw. (54)

Taking Eq. (53), let us arbitrarily state

n d (SS)d1 z
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where Q is a variable defined by this equation and does not necessarily have any other physical

meaning. Rewriting Eq. (53) in terms of Q gives us the following.

fv(n )dT " v -)-

- g&)1wdz:

= jWfok (dQ);

=lw[Q I0;

-. [v(n =)d-r lw[Q(h) -Q(O)]. (56)

Substituting Eq. (53) into Eq. (56) gives us the following-

(no)hlw = lw[Q(h) -Q(O)];

(no)h = Q(h)-Q(O). (57)

Assuming Q(h) and Q(O) have the same magnitudes, they must have the following values

Q 2(h) - + %ob.
2

Q.(O) = 0. (58)

The equations above, when used in conjunction with the other equilibrium equations, ensure

that the particles contained within the model system do not suddenly change species.
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Minimizing Model's Total Energy Equation

We now have a set of differential equations, derived from the appropriate equilibrium

equations, which govern the values of each term within the total energy equation (Eq. (19)). In

order to find which values establish a minimum total energy of the model system, we must solve

these differential equations using the calculus of variations.

Calculus of Variations Calculations

The first thing we must do is adjoin the constraint equations using a set of Lagrangian

multipliers. This is done by multiplying the constraint equations (written in the form 0 = ...) by

a Lagrangian multiplier variable (Eqs. (59 - 64)), and adding the results to the total energy

equation (Eq. (65 - 65e)). The constraint equations with their corresponding Lagrangian

multipliers are

dE , (59)
dz

- .- (60)

A,: . + (61)
dz C- y

12: din2 - 1 E.(~ (62)dz c2T

1 S n,(63)
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The modified energy equation is as follows:

(±L)U - + 2 _ . 2 ÷ . , (64)

dE , (64a)
dBz

dB (64b)

dzO C
+ [dI _!j+ L n2-1 EJ YB (64c)dz Cly

+ XQ [ ---• + n, Idz
dz (64e)

We now have the total energy equation (Eq. (19)) written as a function of a set of energy terms

(Ez, Bx, nl, n2 , Qz, Vy, and Lagrangian multipliers and constants). In order to find the

minimum total energy of the model system, we must find the particular set of values of the

energy terms that, when plugged into the total energy equation (Eq. (19)), yield the lowest

possible value for U.

We start the process by first assuming we know the value of U when the system is in a

minimum total energy state. Then we look for the particular set of values that will give us

assumed value of U. We do this by first expressing the dependent variables (Ez, Bx, n1 , n2 , Qz,

Vy) as a sum of a 'true' function and a 'variation' function. The 'variation' function itself is

composed of an arbitrary component multiplied by an infinitesimal dimensionless parameter a.
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The 'true' function is defined as having the value required to minimize Eq. (19) while the

'variation' function is defined as having any value.

Variation Function ]

BMergy Tree + DIiensioaless krbilrary
Term Function parameer X ]

k k B +[ (a) x (8k 5 ) ];

B5  = B5  ÷ [ (a) x (8B 5 ) ];
"B = + ( (a) x (6.) ) ;
n, +, ÷[ (a) X (8,) ) ;

, '2 ÷[ (a) x (6v,) ) .
v &. +( (a) X (8%)

VY VY v

Expanding Eq. (64 -64e) in this form gives us Eq. (65 - 65e).

We can see that if we eliminate all the 'variation' functions from Eq. (65 - 65e) we would have

the necessary values ('true' functions) of the energy terms to give us the minimum total energy

or assumed value of U. Unfortunately, the 'variation' function can have any value due to its

arbitrary component, so the only way we can eliminate it is to reduce the parameter a to zero.

We can do this by taking the limit of Eq. (65 - 65e) as a goes to zero.

However, since we are looking for a minimum total energy condition of the model system

when it is also in an equilibrium state, we must ensure the resulting expression depicts an

equilibrium condition after we take the limit as a goes to zero. We saw from Chapter II of this

thesis that an equilibrium condition exists when d/d a equals zero. Therefore, in order to

maintain all the conditions of the model system that we want, we must also take the derivative

of Eq. (65 - 65e), with respect to a at the same time that we take the limit as a goes to zero.

The results of performing these two mathematical operations yield Eq. (66 - 66e). Notice that

the total energy of the model system is now expressed as a derivative with respect to a
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2 2-

U J +[ 2Ecf f

x4 2B

+ T3 K ~8B. +a28.
2

+ +(i aftn, VY2 + 2~7va~v, . 2x8V,
2 )

2

+ C1 , + aft, ) v

+ + a8n2 ) y (65)

+_ +___+__+___l+ ~n (65a)

+d FB .+ a8B ,) + + a~ , ( y+ a v (65b)
dz

(,+ s8B) y + &8v,) (B. + a8B, (65c)

Cly

(B, + abB, (65d)

Cqy

+ zQ +(n++a8n,)Jdz. (65e)
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(-xy) 0- da

2

+ C ly 'i 8;l

+ Cqy 1 ' 8n2 (66)

+ d( 6E. 8,-)n (66a)

+18d( 8B. + *18vy+ ';ya (66b)

+ 1d(86n;+) ~2 -T6 - 8B -B.6v)
dz Cly

+ ( 2-y ) 7m1 1y8n, A - Y (66c)

+ 2d( 8% ) )

dz j~z
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(dU/d a). This expression depicts how much any function varies from the assumed minimum

total energy value, U. When dU/d a equals zero, this variance will also be zero. Therefore, if

we can solve Eq. (66 - 66e) so that dU/da equals zero, we will find the values of the energy

terms necessary to depict the minimum total energy state of the model system.

If we now reduce the value of the -variation' function to zero, dU/d a will also become zero,

thereby giving us a minimum total energy condition for the model system.

Taking a closer look at Eq. (66 - 66e) reveals that the value of dU/d a depends on the values

of the arbitrary components (6E., 8B., an,, an, and 6Q.) of the 'variation' function. This

poses a problem for us because the value of these arbitrary components can be anything.

Therefore, we must somehow separate or factor out these arbitrary components from the rest of

the equation so that we are left with only the part of the equation we need.

Integr-aton by Parts

We use integration by parts to separate the arbitrary components from the rest of the

expression in Eq. (66 - 66e) as shown here.

Let 8X - Any Arbitrary Component;

Combined dSeparated.

-f;d(8X) - - (aX) f d( I)(ax). (67)dz f dz

Notice the term outside the integral on the right-hand side of Eq. (67) depicts the endpoints or

boundaries of a given function, ;L in this case.
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Applying integration by parts to Eq. (66 - 66e) gives us an equation Eq. (68 - 68e) in which

the energy terms are written in the form as shown in Eq. (67). By doing this, we can solve the

remaining part of the equation to find out what values of the energy terms will give us zero

variance (dU/da = 0).

8 _+ A;-.8n,-. dz; (68a)

-18.8B. + d( 8B8 + + 1.,n ] dz; (68b)

h l d(1 n, %i 2-y( iEý - V iB. - B 8v)
-1 + f8 + 1 [ +

Sdz CIY

2 - y ) i "8• ] 8;z( (68-)
Cly

+ d(ý) -2-1 2 8112  +f 8; )2 n~'fO dzC 27

;.2~( 2-y ) j-l8nA dz: (68d)

C 2 Y

+ 6 f [d -9--- + 8n, ] dz. (68e)
Coso n tdz s

Consolidating terms yields:
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1 dU~m + + [%8~. 3 8 1 .38n +~D Aq.8Q. Job
(xy) da

+ f { [E..8E + B .8B13 V,+ n1  + VV,
2

+ Ciy(n,) T'n18n + C2y(n2) 1-18n;

+ +~8

dz . ~ 1 V V8

d( .% 1) n, ) 2-( ( BE - V 16B1 - B =38V
* .. •-out ÷Cly

+1( 2 - y ) (n, )11( 8;) (B8 - VB,)

C1y

+ --A)8n2 - - ( .) -( E
di- Cly

1 2(2 - y ) (,' )'"( (% )

C2Y

d iAQ) Q + aQ n 1)dz.
(69)

It is important to note here that one of the constaints required by the calculus of variations is

that the value of any function, 'true" or 'variation,* must be the same at any defined endpoints

of boundaries of a given system. Therefore, the first line of Eq. (69) will equal zero. In order

for dU/d a to equal zero, the remaining differential equations in Eq. (69) must have the

following forms:
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dOB.) -( 1 +n2 ) 2  -y (70)

dz C-y C2y

d(Q.81 ) -B÷ +. ( n1 , ) 2 -,( v . (71)

dz Cay

d(. 1) V 2 y n . VBAI)= - 72 - (CI¥) (n1 )'-! ÷ A1(2 -+)(;1)1-(( V])
dz 2 Cly

-• - 'Lvy 'LO.(72)

d(12 _ 2 (n2)( ). ÷_ +1( 2 - y) (n2) "( )
d =c2Y+ (73)

d(1)_ o, (74)
dz

in order for dU/d a to equal zero. Additionally, the following velocity term must equal

+j( nj ) I-, B. (75)
V , C~y 1 -A 8 .

We now have a set of differential equations represented by Lagrangian multipliers (Eq. (70 -

74)) in addition to Eqs. (59 - 63) which, when solved, will provide us with the values of the

energy terms that will minimize the minimum total energy equation (Eq. (19)). The next step is

to solve this set of differential equations to find out what the value of the energy terms Ez, BV,

nj, n2 , Qz, and Vy should be in order to make dU/da equal zero in Eq. (69). This is where a

computer program becomes useful.
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CHAPTER IV

MODEL PROGRAM

Program Description

As stated in Chapter III, we now have a set of ordinary differential equations (see Chapter III)

which describe an idealized model of the earth's magnetotail. We want to solve these

differential equations with boundary conditions to find a particular set of values of the energy

terms (Ez, Bx, n1 , n2 , Qz and vy) such that when put into the total energy equation (Eq. 19),

they yield the lowest possible value for U. This then becomes the minimum total energy model

for the magnetotail system. Attempting to solve these equations analytically would prove

difficult, if not impossible. Therefore, we must use a computer program to solve these equations.

DVCPR Routine

In order to quicldy and efficiently solve the differential equations derived in Chapter III, we

have used an IMSL (International Mathematics Science Library) computer routine - DVCPR. The

DVCPR program solves a system of ordinary differential equations with boundary conditions at

two points, by using a variable order, variable step size, finite difference method with deferred

corrections.

As stated above, the boundary conditions for the idealized magnetotail model occur at the top

and bottom surfaces of the rectangular slab. Basically, the DVCPR tries to solve the differential

equations by using the trapezoidal rule over the entire height of the magnetotail model. The

accuracy of the programs calculations increases as the number of step sizes increases. These

step sizes represent uniform horizontal slices within the model. The details of how this program

works are shown in Appendix A.
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Dimensional Transformation

We now have a program which will solve the system of dimensionless differential equations

we derived in Chapter III. Before we enter these equations into the program, we must ensure

the dimensionless forms of the energy terms relate to each other in the same manner as the

dimensioned terms in Eq. (16) do. We do this with scaling quantities as shown in Eq. (76)

below.

Dimemioned Value - Dimensionless Value x Scaling Quantity . (76)

In order to determine the values of the scaling quantities, we rewrite Eq. (16) and the

constraint equations in the following form:

Enegy Elquation

m(n) (v,2 (1 2) + -e +C) (77)

________ ( +2 0 E + (C)(n').
2 21p 2

(Note: n = nI or n2 and C = C1 or C2 .)

Maxwel 's Equations

8(E 3 ) - ,q(n) q ) (78)

a(z) 0

and,

a(Bz) -p~q(nl)(v,). (79)

a ( z
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Forc, Equations

a(n) , (Al) 2-y (E - v^B) (80)

a(z) (CO)Y

and,
a ( ) (• )• ( , )(81)

a(z) (C 2 )y

a ( Q ) .( (n,))8 Q)= q(n 1 ). (2
a(z)

The next step is to multiply each of the equations above (Eq. (77 - 82)) by a corresponding

scaling quantity.

Enegy Equation

m (n n. )(v, v,. ( B- ;, % (E. +(C. )n , )y (83)
2 2go 2

Maxwell is Equations

a ( E .,) q (,,n,.) q ( n n ) (84)

a(zz,) o e

and ,
a ( B B )p ( n, tn ) ( vyv. ) (as)C(zzB) = -Z.q(n 1 n,)(vyv,)(
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For Equauions

a(u n,.) (N) 2  ((E,,) - ( Vv, ) (B. B;)) (86)
a( zz. (c, r,. Y

and,

a(n n.) ( 0 V') 2-1 •. (87)

a z(z,) ( C2 C

Chrge Conservaton F4ation

a ( q, Q,. (88)
a= q(zz). (
O(zz,)

In Eqs. (84 - 88), we can collect all the non-scaled energy terms on the left side of the

equation(s) and set them equal to any arbitrary value we want. In this case, we will set them

equal to one. Now we set the remaining constants and scaled quantities on the right side of the

equations equal to the left side of the equations to get the following equations:

Maxwell's Equation

1= q _n_,)(_ )
6 (B,) % (89)

and,

(..• ( ) ( vz,)

1 I)o q (90)
(B;)
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Force Equations

I n,.)y- (c N ) .

(91)
(v,.)(B,,)

and,

y ( )(92)

Marige Conemvatlon Equaion

1 = +q (nj.)(z) (93)
(Q..)

We basically perform the same type of operation for the energy equation (Eq. (83)) with a slight

twist. The first thing we do is factor the constants and scaled variables from the first term on

the right side of Eq. (83). We then divide the rest of the terms on the right-hand side of the

equation by the same factor as shown in Eq. (94).

ery Equation

u = + 4. + +(mm.v,,.) (mn,•,') (mn•,,.') 2 •,.
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But since,

12 1 12

mný.v, 2 ) Mn.v7
2 ) mný.v, 2 ) vnMýv 7

2 . nm.v,2 ) (95)

we can say,

•. 2o
n' 2 p 'D,ý _C.2 (96)

At this point we have eight scaling equations (Eqs. (89 - 93, 96)) made up of five constants

({o po, y, e, and m) and seven unknown scaling variables (Ez. B;,, ns, zs, Qz., Cs, and vy.). It

is important to note that we are talking about scaling quantities here, not scaled quantities. In

the thesis, "scalinge quantities are used to generate dimensioned parameters by multiplying them

with a given dimensionless number, and are not to be confused with a "scale* height or length

that represents an interval in which some parameter changes by a factor of e.

Setting one of the unknown scaling variables to a specific value with units (i.e. v. = 3.0 x 108

m/s), we can begin rewriting the remaining unknown scaling variables in terms of constants and

one unknown variable, which we arbitrarily pick to be n. Since we are choosing vs to be equal

to the speed of light, we will denote it as a constant c, from now on.

Therefore, we begin to solve for the values of the scaling quantities by starting with

Erý m x B,;. (97)
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We can see from Eq. (90) that

B ,, - ,. 2 m.- (98)

At this point, we can solve for any of the scaling quantities from Eqs (89 - 93). We arbitrarily

solve for the scaling height zs, from Eq. (89). Also using Eqs. (97) and (98), we see that

__(_, ) %[=(S;)] %n[c C( /1L m)] (99)

qtm q n q n

If we now square Eq. (99) and factor out c (i. %) 2, we get

2 - m (100)

Taking the square root of Eq. (100) yields

z, = (101)

which is written in terms of constants and one scaling quantity, n.. We are now at a point

where we can rewrite the remaining scaling variables in terms of ns, zs, c, and other known

constants. They are as follows:
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D Z.

S-

BN - I (102);2

C . - -q -( n o - =2- Z .2
CoY

We now have all the scaling quantities written in terms of constants and two scaling

quantities, ns and z.. Since the scaling height, z., is also written in terms of the scaling number

density, ns, all the scaling quantities are related to each other. Choosing a value for n. will set

the values for the other scaling quantities accordingly. At this point, we are able to use the

dimensionless forms of the energy terms within the minimum total energy program and use

DVCPR routine. The details of the minimum total program are shown in Appendix B.

Model Output

By picking a suitable scaling number density, we can generate appropriate values for the

remaining scaling quantities. Multiplying these scaling quantities by dimensionless numbers

provides the input for the DVCPR program to begin solving the dimensionless differential

equations we derived in Chapter Ill. The program then divides the model's N-S profile into a

number of segments and comes up with dimensionless values for each of the energy variables for

each segment. These values can then be plotted on a graph to come up with dimensionless N-S

profiles of the energy variables. The profiles generated by this program only depict the region

between the bottom surface of the model, or neutral sheet, to the top surface or the plasma

sheet boundary layer. Although the southern half of the central plasma sheet is not depicted in
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this model, the profiles should by symmetrical from north to south for the number densities, ion

velocities, and ion temperatures. Due to the nature of the magnetotail, the electric and magnetic

fields would have asymmetrical profiles.

By setting the dimensionless number density of the model magnetotail to one and setting the

scaling number density to 1.0 X 106 particles per cubic meter (typical value observed within the

central plasma sheet of the earth's magnetotail), we come up with the following scaling

quantities for the other model energy parameters.

Scaling Quantities

-> (1.0 X106  [m 3])
z -> (2.28X10s [ml)
E > (4.12X10 3 [V/m])
B > (1.37 X 10s [t])
Cs -> C.5 X 0"14 [Ckg)(• 4 )/(A)(s2)])

Next, we multiply these scaling quantities by one to come up with the following model energy

parameters, with units.

Dimensionless
Raw Data - Value X Scaling Quantity

nRAw -> 1.0 X106 [M-3 ] = (1.0) X (1.0 X106  [M-3 ])
ZIAW -> 2.28X10s [m] = (1.0) X (2.28X10 5  [m]m)
ERAw -> 4.12 X 103 [V/m] = (1.0) X (4.12 X 10 3 [V/m])
BRAw -> 1.37 X 10 5 [t] = (1.0) X ( 1.37 X 10-s [t] )
CRAW-> 1.5 X 10-14 [kgm 4/A3 ] - (1.0) X ( 1.5 X 10-14 [kgm4/A 3])

These numbers, when entered into the minimum total energy program (Appendix B), generate

integrated numerical data (Appendix C) and a dimensionless N-S profile as shown in Fig. 24.
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Notice that the ion and electron number densities both increase as they get closer to the model

magnetotail's neutral sheet, which is what we would expect to see in the earth's magnetotail.

Also note that the magnetic field strength goes to zero at the model magnetotail's neutral sheet-

again what we would expect to see in the earth's magnetotail.

Figures 25 through 28 show how the dimensionless energy parameters vary as the height of

the model increases from 0.01, a very thin slab, to 95 scaling heights, a thick slab (numerical

data are in Appendix C). It is interesting to note that all the parameter changes occur within

three (6.84 x 105 m) or four scale heights (9.12 x 105 m), no matter how high we make the

profile. In order to ensure the results generated by the minimum energy model are not

inconsistent with the laws of classical physics, we compare the height in which the parameter

changes take place to the Debye length and the Larmor radius of an ion used within the model.

The equations for finding an ion's Debye length and Larmor radius are

DebyeLength - AD = 69-0

Larmor Radius = r = ( B)
( q)(B )

Using the numerical data from Appendix C, we see that the ion Debye length is approximately

1542 m while the Larmor radius ranges in value from 2.29 x 105 - 5.62 x 10 6 m. We can

ignore the Debye length since it is smaller than the Larmor radius. Looking at the Larmor

radius, however, we can see that its values have the same order of magnitude as the height in

which the parameters change in the model profiles. This result shows that the minimum energy

model is not inconsistent with the laws of classical physics.
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FIG. 24. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE II. Scaling Data Corresponding to Fig. (24).

Number of
Scaling Quantity Scaling Quantities

N (Number Density) = 1.0 ;
z. (Model Magnetotail Height) = 1.0 ;
Eý (Z-component of the Electric Field) = 1.0 ;
B. (X-component of the Magnetic Field) = 1.0 ;
Cs (Magnetotail Adiabatic Constant) = 1.0.
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FIG. 25. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B,), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE I11. Scaling Data Corresponding to Fig. (25).

Number of
Scaling Quantity Scaling Quantities

N (Number Density) = 1.0 ;
! (Model Magnetotail Height) = 0.01;
Es (Z-component of the Electric Field) = 1.0;
B, (X-component of the Magnetic Field) = 1.0;
C, (Magnetotail Adiabatic Constant) = 1.0.
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FIG. 26. N-S profiles of number densities (n1 and n 2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE IV. Scaling Data Corresponding to Fig. (26).

Number of
Scaling Quantity Scaling Quantities

N (Number Density) = 1.0 ;
z; (Model Magnetotail Height) = 0.1 ;
Eý (Z-component of the Electric Field) = 1.0 ;
Bs (X-component of the Magnetic Field) = 1.0 ;
Cs (Magnetotail Adiabatic Constant) = 1.0.
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FIG. 27. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE V. Scaling Data Corresponding to Fig. (27).

Number of
Scaling Quantity Scaling Quantities

n. (Number Density) = 1.0 ;
z. (Model Magnetotail Height) = 10.0;
E, (Z-component of the Electric Field), = 1.0 ;
B. (X-component of the Magnetic Field) = 1.0 ;
Cs (Magnetotail Adiabatic Constant) = 1.0 .
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FIG. 28. N-S profiles of number densities (nh and n2), x-component of the magnetic field (B.), and

the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE VI. Scaling Data Corresponding to Fig. (28).

Number of
Scaling Quantity Scaling Quantities

n. (Number Density) = 1.0;
;ý (Model Magnetotail Height) = 95.0;
E5 (Z-component of the Electric Field) = 1.0 ;
Be (X-component of the Magnetic Field) = 1.0 ;
C. (Magnetotail Adiabatic Constant) = 1.0.
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In order to come up with real values that represent typical values of the earth's magnetotail,

we would have to multiply the scaling quantities by the following dimensionless values.

Dimensionless
Raw Data - Value X Scaling Quantity

nRAw -> 1.0 X106 [rM3] (1.0) X (1.0 X106  [m-3])
ZRAW -> 2.96X10 7  [m] - (1.30X10 2 ) X (2.28X10 5  [m])
ERAw -> 1.5 X 10s [V/m] = ( 3.64 X 10-9) X ( 4.12 X 103 [V/m])
BRAw-> 2.0 X 10 4 [t] ( 1.46 X 10") X ( 1.37 X 10-5 [t] )
CRAW-> 6.9 X 10.19 [kgm4/A3 ] ( 4.59 X 10-) X ( 1.5 X 10-14 [kgm 4/A 3])

Unfortunately, the minimum total energy program is unable to handle these numbers because

the system height (1.30 x 102 scale heights) is much larger than the scaling height zs. However,

by starting with a small height, unity for example, and increasing it until the program can no

longer handle the input values, we can look at the trends in the numerical data (Appendix C)

and profiles (Figs. 29 - 34) and draw conclusions from them.

Remember, the top and bottom values of each of these profiles are constrained by the

following boundary conditions:

1 (0)= 0; A, (h) = 0;

12(0) = 0; 1,2 (h) = 0;

E ( -) 0; B,(h) 0 0;

B.(O) = 0; B.(h) =+B,.



75

1.1 * 1.1 1.1

1.0 1.0 1.0
.9 .9 A

..7 '.7 • .7

.6 .6A

.5 4 .5 o .5

.3 = .3 : .3

.2 .2 .2

.1 .1 .1
01 0 10

Ion Nuntlw Density Electron Nuwbe Density MagnekFid

1 ........ . ............. 1 . ............. . 1.1
1.0 1.0 1.0

.9 .9 .9
.88 .7 .7

.6 .6 .6

.4 .4 .4.5 .5 .3

,2 .2 ,2
.1 .1 .1

0 0 0

0 0 0 0 0 0 0 -0 -0 -0 0

Ion Teaienalwn

FIG. 29. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE VII. Scaling Data Corresponding to Fig. (29).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity

nRw -> 1.0 X106 [M-3] = (1.0) X (1.0 X106 [m"3])
ZRAW -> 2.28X10s (m] = (1.0) X (2.28X10 5  [ma])
Ew-> 1.5 X 0S [V/m] = ( 3.64 X 10-9 ) X ( 4.12 X 103 [V/m])
BRAw -> 2.0 X 10 It] = ( 1.46 X 10-3 ) X ( 1.37 X 10s [T )
CRAw-> 6.9 X 10"9 [kgm4 /A3 ] ( 4.59 X I0-s ) X ( 1.5 X 10.14 [kgm4 /A3])
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FIG. 30. N-S profiles of number densities (n, and n2), x-component of the magnetic field (Bx), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE VIII. Scaling Data Corresponding to Fig. (30).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity

nR.w -> 1.0 X106 [M-3] = (1.0) X (1.0 X106 [M-3)
ZRAw -> 4.56X10W (m] = (2.0) X (2.28X10s [m])
ERAw -> 1.5 X 105 [V/m] = ( 3.64 X 10-9 ) X ( 4.12 X 103 [V/m])
BRAw -> 2.0 X 10 4 [t] = ( 1.46 X 10"3 ) X ( 1.37 X 10- [t] )
CRAw -> 6.9 X 10.19 [kgm4/A3 ] ( 4.59 X 10-s ) X ( 1.5 X 10-14 fkgm 4/A 3])
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FIG. 31. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE IXL Scaling Data Corresponding to Fig. (31).

Dimensionless Scaling

Dimensioned Parameter = Unit X Quantity

nRAw -> 1.0 X 106 [M-3] = (1.0) X ( 1.0 X 10ý [M-3])
zRAw -> 6.84X 10 [m] = (3.0) X ( 2.28X10 [m])

ERAw -> 1.5 X .0-4 [V/m] ( 3.64 X 10-9 ) X ( 4.12 X 103 [V/m]

B0.w -> 2.0 X 10". [t] =.( 1.46 X 1003 ) X ( 1.37 X 10-s [t] )

CRAkw -> 6.9 X 10-19 [kgm4/A3] = ( 4.59 X 10-5 ) X ( 1.5 X 10-14 rkgm4nA%]
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FIG. 32. N-S profiles of number densities ( 1n and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE X. Scaling Data Corresponding to Fig. (32).

Dimensionless Scaling

Dimensioned Parameter = Unit X Quantity

nw-> 1.0 X106  [m31 = (1.0) X (1.0 X106 [m13])
zw-> 9.12X105  (m] = (4.0) X (2.28X105  [m]m)

ElAw -> 1.5 X 10"5 [V/m] = (3.64 X 10.) X ( 4.12 X 103 [V/m])
BRAw -> 2.0 X 10 [t] = ( 1.46 X 10-3 ) X ( 1.37 X 10-5 (t) )
CRAW -> 6.9 X 10.19 [kgm4 /A3 ] ( 4.59 X 10-s ) X ( 1.5 X 10-14 [kgm4/A 3])
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FIG. 33. N-S profiles of number densities (n, and n2), x-component of the magnetic field (B.), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE XI. Scaling Data Corresponding to Fig. (33).

Dimensionless Scaling
Dimensioned Parameter - Unit X Quantity

nRJAw -> 1.0 X10 6  [rM3] = (1.0) X (1.0 X106  [m-3])
ZRAW -> 1.14X106  [m] = (5.0) X (2.28X10 5  [m])
ERAw -> 1.5 X 10-S IV/m] = ( 3.64 X 10.9 ) X ( 4.12 X 10 3  [V/m])
BpRw -> 2.0 X 4  [t1 = ( 1.46 X 10-3 ) X ( 1.37 X 10-s [t] )
CRAW -> 6.9 X 109 [kgm4/A3 ] ( 4.59 X 10-5 ) X ( 1.5 X 10-14 [kgm 4/A3])
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FIG. 34. N-S profiles of number densities (n, and n2), x-component of the magnetic field (Bx), and
the z-component of the electric field (Ez) generated from the minimum total energy program.

TABLE XII. Scaling Data Corresponding to Fig. (34).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity

nRAw-> 1.0 X10 6 [m 3 ] = (1.0) X (1.0 X106 [M"3])
zpw > 2.28X10 6 [m] = (10.0) X (2.28X10 5  [m])
ERAw -> 1.5 X10 5 [Vi/m] = (3.64X10"9 ) X (4.12X10 3 [V/m])
Bw -> 2.0 X 10-8 [t] = ( 1.46 X 10-3 ) X ( 1.37 X 10-5 [t] )
CRA -> 6.9 X 109 [kgm 4/A3 ] ( 4.5ý' X 1 0 -S ) X ( 1.5 X 10-14 [kgm4/A 31)
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Comparison of these calculated N-S profiles to those observed in the earth's magnetotail, as well

as the overall assessment of the energy minimizing technique presented in this thesis, will be

discussed in the next chapter.
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Ci-APTER V

DATA ANALYSIS

Observed Magnetotail Parameters

The ultimate goal of executing the minimum total energy program (see Appendix 2) is to

come up with values for the ion and electron number densities (nI and n2 ) and for the electric

(Ez) and magnetic (B1x) field strengths over the height of the model magnetotail system.

Plotting these on a graph yields N-S profiles of these model parameters. By comparing the

model's calculated profiles with those obtained from typical values of the earth's magnetotall, we

should be able to determine how effective the minimum total energy model is at defining a

minimum total energy state of the earth's magnetotail.

Figure 35 depicts a N-S profile of some key parameters typical of the near earth's magnetotail

(20 - 30 Re) during solar quiet times and with a southward interplanetary magnetic field (IMF).

In order to compare the profiles in Fig. (35) to the ones generated by the minimum energy

model, we must first linearize the logarithmic scales for the number density, flow speed, and ion

temperatures (Figs. 36 - 38). Since this N-S profile does not change dramatically for a

northward pointing IMF (Lui, 1987), we will assume that the minimum energy model depicts

this situation also.

Comparison to Model Output

At first glance, the model generated profiles do not compare very well to the profiles obtained

from averaged parameters observed in the earth's magnetotail, but there are some similarities.

Looking at the model generated profiles using typical magnetotail values (Figs. 29 - 34), except

for height, and noting that we are only looking at the central plasma sheet region, we can make

some comparisons between the two profiles. Notice that in both profiles, model generated and
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observed, the ion and electron number densities increase rapidly near the upper edges of the

boundary (plasma sheet boundary layer for the observed profile). The number densities then

increase less rapidly as they approach the center or bottom boundary (neutral sheet) of each

profile. The model differs from the obsei ved values in that there is no significant increase in the

number densities towards the center of the system (or neutral sheet).

Another similarity occurs in the magnetic field strength profiles. The observed magnetic field

strength appears to lose strength more quickly in the top half of the central plasma sheet (3 - 5

Re) than in the lower half (0 - 3 Re). The same situation occurs in the model magnetotail, but

the magnetic field strength rate changes more rapidly in the upper half of the m lel and less so

(if at all) in the lower half of the profile. This difference becomes more dramatic with increased

scale height (Figs 33 - 34).

The velocity and temperature trends for both the magnetotail and model profiles also show

some similarities. For instance, both systems have their maximum velocities at their upper

boundaries, which decrease until they reach their minimum at the lower boundaries. The

temperature trends, on the other hand, show the opposite trend for both systems. Both systems

have their lowest temperatures at the upper boundaries, which increase to a maximum at the

lower boundaries.

Finally, both the magnetotail and the model systems both display a degree of diamagnetism.

In other words, both systems have a tendency to try to get rid of the magnetic field energy from

their centers. Looking at the profiles for both systems shows thaL the magnetic energy is at a

minimum near the bottom boundary or center of each system. In the magnetotail system, this

magnetic field energy increases slowly away from the center, then abou halfway (3 Re) between

the neutral sheet and the plasma sheet boundary layer, the magnetic field strength increases

more rapidly. The same thing happens in the model system, but the rate of magnetic field

energy strength is more diamatic with increased profile height. The comparisons between the
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magnetotail and model systems are summarized in Table XlII.

As mentioned earlier, all the energy parameter changes appear to be confined to the top of all

the N-S profiles as the model system's height becomes greater than ten scaling heights (z -= 10 x

z.). It appears that any further increases in the profile heights will only stretch the bottom

regions of each profile whose values already remain relatively constant at higher heights. This

phenomenon seems to suggest that the model is depicting a situation where the majority of the

energy changes or action takes place. within the outer boundaries or sheaths of the region being

Table XUII. Profile Comparison Summary Between Model and Magnetotail Systems.

Observed Model

Number density increases rapidly Number density increases rapidly
at the Plasma Sheet Boundary at the top boundary, less rapidly
Layer, less so near the Neutral at the bottom boundary.
Sheet.

Magnetic field strength decreases Magnetic field strength decreases
quickly near the Plasma Sheet quickly near the top boundary,
Boundary Layer, less so near the less so near the bottom boundary.
Neutral Sheet.

Plasma bulk flow speeds are greatest Ion velocities are greatest near
near the Plasma Sheet Boundary the top boundary of the model,
Layer, lowest near the Neutral lowest near the bottom boundary.
Sheet.

Ion temperatures are lowest at the Ion temperatures are lowest at the
Plasma Sheet Boundary Layer, highest top boundary of the model, highest
at the Neutral Sheet. at the bottom boundary.

Magnetic field displays some degree Magnetic field displays some
of diamagnetism. degree of diamagnetism.

Height of the top half of the Cerqral Maximum heighft of the model is
Plasma Sheet is about 3.19 X 101 m. about 2.28 X 10 m.
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modeled. Closer inspection of the observed energy profiles in Fig. 35 shows similar trends

within or near the Plasma Sheet Boundary Layer just as the model seems to indicate.

There appear to be many reasons to explain the differences observed between the two profiles,

and one of the more obvious may be the geometry of the model system. Although the Central

Plasma Sheet of the earth's magnetotail can be approximated by a rectangular slab, its height-to-

width proportions are not infinite as depicted by the model system. While making the model's

length and width dimensions infinite helped keep calculations simple, it did not accurately

portray the magnetotail system.

The boundary conditions placed on the model system may also have restricted it too much to

accurately depict the magnetotail system. For instance, the model system constrains the z

component of the electric field to be zero at both the bottom and top boundaries. Although this

constraint keeps the model simple, it may not reflect what is actually observed within the

neutral sheet and plasma sheet boundary layer. Some of the boundary conditions may have

been too simple due to some of the assumptions made. For example, the model assumes that

the z component of the magnetic field equals zero at the bottom boundary (or neutral sheet),

which may not be true in the magnetotail. Similar arguments can be made for the other

boundary conditions used in the model.

Another possible reason for the differences observed between the two profiles may be that the

model may have been oversimplified and does not depict actual magnetotail conditions. For

example, the model described in this thesis used only an x component of the magnetic field (no

y component). This was done for two reasons. The first was to simplify the calculations

required for the minimum total energy program. The second reason was that for a first

approximation, the region that the model was trying to depict (the midnight region of the

central plasma sheet) the y component of the magnetic field appeared to be negligible compared

to the x component. We cannot say the same thing about the z component of the magnetic
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field. Because the Central Plasma Sheet is the likely site where anti-parallel magnetic field lines

would connect between the northern and southern tail lobes, the z component of the magnetic

field does exist within the earth's magnetotail. This z component of the magnetic field would

probably have an appreciable effect on the outcome of the model's output.

Another model oversimplification was that it only allowed one species of particles, ions, to

move about within the model system. Again, this assumption was used to keep the calculations

for the minimum total energy simple. This assumption may have affected the electron number

density profile. Given the same initial parameters in the computer program, the electron

number density profiles should have looked like the ion number density profiles.

Finally, the model system was assumed to be in a steady-state condition. Observations of the

earth's magnetotail suggest that it is rarely, if ever, in a steady-state condition. Therefore, we

have a situation where we are trying to compare a steady-state model system to a non steady-

state magnetotail. If it were possible to get some profiles of the earth's magnetotail parameters

while it experienced a steady-state condition, however briefly, we might see some additional

correlations between the model and actual magnetotail systems.
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CHAPTER V

CONCLUSIONS

Although the minimum total energy model presented in this thesis is able to depict many of

the trends observed within the central plasma sheet of the earth's magnetotail, it is evident that

it does not have the sufficient detail to depict it accurately. One similarity that the moiel does

have with the earth's magnetotail, however, is that almost all of the parameter changes occur

near the outer or top boundary of the model system. The same thing is true in the earth's

central plasma sheet in that the greatest parameter changes also occur near the outer boundary

or plasma sheet boundary layer. Another similarity between the model and the earth's central

plasma sheet is that both systems show diamagnetic qualities. In other words, both systems

show indications of trying to rid their centers of magnetic field energy.

Therefore, the model seems to suggest that in order for the central plasma sheet in the ear

magnetotail to reach a minimum total energy state, it must attempt to eliminate as much enjy

from the center of its system as possible. The model demonstrates this fact very well with th.-

magnetic field energy. It appears that the model system attempts to reach a minimum total

energy state by keeping the magnetic field energy to a minimum near the center, and allowing

its energy to increase near the outer boundary. There is some indication that the earth's

magnetotail system also showssome indication of trying to keep the magnetic field strength near

the neutral sheet to a minimumn

These similarities seem to indicate that although the model may be oversimplified in its

present form, it does have a handle on the basic physics governing the energies located w1',

the central plasma sheet. However, it is also evident that further modifications are s

to make this minimum total energy model useful.

-V.

Mg AfAl Ofto D= WP 4~r I
Tfn R



90

Areas for Future Studies

One of the first steps to improving this model may be to eliminate or modify some of the

assumptions used, specifically those discussed in Chapter V. Other areas of improvement

include:

a) changing the geometry of the model to better correspond to the shape of the central

plasma sheet located within the earth's magnetotail.

b) using boundary conditions that more accurately depict conditions observed within

the plasma sheet boundary layer.

c) adding a z component of the magnetic field into the model system.

d) adding a capability into the model to include a gradient up and down the x-axis of

magnetotail model. In this way, the model would be able to take into account the

processes occurring up and down the magnetotail axis.

e) including additional processes observed within the earth's magnetotail into the

model.

0 comparing model output with profiles generated from the earth's magnetotail during

northward IMN.

Although this model, in its present form, does not precisely depict the earth's magnetotail

system, it may represent, to a first approximation, other systems in non-thermodynamic

equilibriums (i.e. radiating systems).
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IMSL ROUTINE NAME - DVCPR
(As reproduced from IMSL Library

FORTRAN Subroutines for Mathematics and Statistics)

PURPOSE Solve a system of ordinary differential equations with boundary conditions
at two points, using a variable order, variable step size finite difference
method with deferred corrections.

USAGE Call DVCPR (N, FCNI, FCNJ, FCNB, XA, XB, NGMAX, NGRID, IP, IR, TOL, X,

Y, IY, ABT, PAR, WORK, IWORK, IER).

ARGUMENTS N - Number of differential equations (INPUT).

FCNI - Name of subroutine for evaluating derivatives (INPUT). The
subroutine itself must also be provided by the user and it should
be of the following form:

SUBROUTINE FCNI (N, X, Y, YPRIME)
REAL Y(N), YPRVIE(N) ...

FCNI should evaluate YPRIME(1) ... YPRIME(N) given N, X, and
Y(1) ... Y(N). YPRIME(I) is the derivative of Y(I) with respect to
X.

FCNI must appear in an external statement in the calling program.

FCNJ - Name of the subroutine for evaluating the N by N Jacobian matrix
of partial derivatives (INPUT). The subroutine itself must also be
provided by the user and it should be of the following form:

SUBROUTINE FCNJ (N, X, Y, PD)
REAL Y(N), PD(N, N) ...

FCNJ should evaluate PD(I, J) for I, J = 1, N, given N, X, and Y(1)
... Y(N). PD(J, j) is the partial derivative of YPRIME(l) with
respect to Y(J).

FCNJ must appear in an external statement in the calling program.

FCNB - Name of the subroutine for evaluating the boundary conditions
(INPUT). The subroutine itself must also be provided by the user
and it should be of the following form:

SUBROUTINE FCNB (N, YA, YB, F)
REAL YA(N), YB(N), F(N) ...
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FCNB should evaluate F(1) ... F(N) given YA(1) ... YA(N), YB(1) ...
YB(N). YAW and YB(I) are the values of Y(1) at XA and XB,
respectively, and the boundary conditions are defined by
F(1) = 00.0, 1 = 1, N. The initial conditions must be defined
first, then the coupled conditions, and then the final conditions.

FCNB must appear in an external statement in the calling
program.

XA, XB Two points where boundary conditions are given (INPUT). XA

must be less than XB.

NGMAX - Maximum number of grid points to be allowed (INPUT).

NGRID - Number of points in the input grid (counting endpoints). NGRID
must be greater than 3. On output. NGRID will contain the final
number of grid points (INPUT/OUTPUT).

lP - Number of initial conditions (INPUT). IP must be greater than or
equal to 0 and less than N.

IR - Number of coupled boundary conditions (INPUT). IP + IR must be
greater than 0 but less than or equal to N.

TOL - Relative error control parameter (INPUT). The computations stop
when ABS (ERROR (J, I))/AMAXI (ABZ, (Y(J, 1), 1.0) is less than
TOL for all J = 1 ... N, I= 1 ... NGRID, where ERROR (J, l) is the
estimated error in Y(J, I).

X - Vector of length NGMAX containing the final grid. If PAR(4) = 0,
the program initialize X to a uniform mesh of NGRID points.
Otherwise the user must supply the initial grid on input
(INPUT/OUTPUT).

Y - Matrix of dimension N by NGMAX containing the computed
solution on the final grid. Y(J, 1) will return an approximation to
the Jth solution component at X(I). If PAR(4) = 0, the program
initialize Y to zero. Otherwise the user must supply initial values
for Y (INPUT/OUTPUT).

PY Row dimension of matrix Y, exactly as specified in the dimension
statement (INPUT). IY must be greater than or equal to N.

ABT . Vector of length N containing, in its Jth component. an estimate of
the maximum absolute error over the grid points for the Jth
solution component (OUTPUT).

PAR - Options vector of length 5 (INPUT). If PAR(l) = 0 the default
options are used and the remaining components are ignored. If
PAR(l) = 1, all remaining components of PAR must be given a
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value. The default value of PAR(I) in each case is zero.

PAR(2) greater than 0 implies that continuation is to be done for
this highly nonlinear problem. It is assumed that the user has
embedded his problem in a one parameter family

DY/DX = YPRIME (XM Y, EPSNU)
F(Y(A), Y(B), EPSNU) = 0

such that for EPSNU = 0, the problem is simple (e.g. linear), and
for EPSNU = 1, the original problem is recovered. The program
will automatically attempt to go from EPSNU = 0 to EPSNU = 1.
PAR(2) is the starting step in the continuation. The step may be
varied by DVCPR but a lower bound the stepsize of 0.01 is
imposed. The following common block should appear in
subroutines FCNI, FCNJ, and FCNB -

COMMON / C1 / EPSNU, CONT
REAL EPSNU
LOGICAL CONT

If CONT = .TRUE. vectors YPRIME in subroutine FCNI and F in
subroutine FCNB should be defined by

YPRIWIE(I) = D(YPRIME(I))/D(EPSNU)
F(I) - D(F(I))/D(EPSNU)

and when CONT = .FALSE., YPRIME and F should have their
normal definitions.

PAR(3) = 1, implies that intermediate output is to be printed (for
debugging purposes).

PAR(4) = 1, implies that initial values for X and Y are supplied by
the user.

PAR(S) = 1, implies that the differential equations and boundary
conditions are linear, and the algorithm should take advantage of
this fact.

WORK - Real work vector of length

N*(3*N*NGMAX+4*N+ 1) +NGMAX*(7*N+2)

IWORK - Integer work vector of length

2*N*NGMAX+N+NGMAX

IER - Error parameter (OUTPUT).
Terminal error
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IER = 129 Illegal values for N, NGRID, IP, or IP.
IER = 130 More than NGMAX grid points are needed to solve

the problem.
IER = 131 Newton's iteration diverged.
IER = 132 Newton's iteration reached roundoff error level. If

requested precision is not attained, this means that
TOL is too small.
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APPENDIX B: Minimum Total Energy Program
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MINIMUM TOTAL ENERGY PROGRAM

REAL Z(1001), K(10, 1001), WORK(384824), ZA, ZB, PAR(5), ABT(3), TOL, U(1001),
ENERGY(1001), VX(1001), ZBR(1001), N1R(1001), N2R(1001), EZR(1001), BYR(1001),
QR(1001)

REAL MRAW, QRAW, NRAW, ZRAW, ERAW, BRAW, CRAW, VLIGHT, EPSILON, MU, NS, ZS, ES,
BS, QS, CS, VS, MQN, BOLT, TRAW

INTEGER IWORK(21031), N, IK IER, NGMAX, NGRID, IP, IR

INTEGER I, MRATIO

COMMON/XXX/VAR, C, C1, (2, GAM, G1, G2, ZA, ZB, DENSITY, BO, NO

EXTERNAL FCNI, FCNJ, FCNB

** OPEN DATA FILES **

OPEN (1, FILE - THTENAME.DAT, STATUS - 'NEW) [This part of the program opens files
OPEN (2, FILE = 'PLOT-NI.PLT, STATUS ' NW) storing numerical and plotting data]
OPEN (3, FILE = 'PLOT-N2.PLT, STATUS - 'NEW)
OPEN (4, FILE - 'PLOT-EFLD.PLT, STATUS = 'NEW)
OPEN (5, FILE = 'PLOT-BFLD.PLT, STATUS = 'NEW)
OPEN (6, FILE = 'PLOT-Q.PLT, STATUS = 'NE)

INPUT INITIAL VALUES (HAVING DIMENSIONS) **

WRITE ( ', *) TEnter number density (in particles per cubic meter)' [measured n1
READ (*, *) NRAw or n2x

WRITE ( !, ) 'Enter height of magnetotail (in meters)' [measured z]
READ C*,*) ZRw

WRITE (*, *) 'Enter z-component of the electric field (in volts per meter)' [measured E]
READ*, *) W

WRITE (*, *) !Enter x-component of the magnetic field (in teslas)' [measured B]
READ BM ) aW

WRITE ( ', *) Enter magnetotall temperature (in degrees Kelvin)' [measured T1
READ (*, *) TRAw
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CONSTANTS **

VLIGHT = 3.0 X 108 [Velocity of Light]
GAM = 5.0/3.0 (Gamma = Ratio of Specific Heats]
EPSILON = 8.85 X 10.12 [Permittivity of Free Space]
MU = 1257 X 10-6 [Permeability of Free Space]
BOLT = 1.381 X 10-" [Bol1zmnann Constant]
MRAw = 1.67 X 10-27 [Mass of Ion in kgs]
QRAw = 1.602 X 10-19 [Electron Charge]
CRAw = (BOLT) * (TRAw)*(NRAw X 10[') (Calculated Adiabatic Constant]

** SCALING QUANTITIES **

NRAw = Inputted from above (Measured Number Density]

Ns = NlAw [Scaled num den = measured num den]
Zs = Sqrt (M w / (MU * NRAw * QRAw2)) [Scaled magnetotall ht]
ES = (QRAw * NS * ZS) / (EPSILON) (Scaled E fld strength]
Bs = (E,) / (VIGHT) (Scaled B fid strength]
Qs = (QRAw *N*N Z [Scaled Chg conserve term]

CS = 1,LSGHT2)N. GSlA) * MAW [Scaled adiabatic constant]

** DIMENSIONLESS VALUES

ZR•W = Inputted from above (measured magnetotail height in meters)
ERAw = Inputted from above (measured electric field in volts per meter)
BRAw - Inputted from above (measured magnetic field in teslas)
CR~w = Calculated from above (adiabatic constant)

No - NRW /NS INum den w/units]
Z -= ZRAw ZS [Magnetotail ht w/ units]

= ERAw /ES [E fid w/ units]
Bo = BRAw /Bs [B fld w/units]
CO = CAW C/ S [Adiabatic constant w/ units]

C1  = CO (Adiabatic constant for ions]
C2  = CV [Adiabatic constant for electrons]
G, = 1/(C *GAM)
G2 = 1/(C2*GAM)
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** DVCPR ARGUMENT SETUP **

N = 10 [Number of variables]
ZA = 0 [Height of bottom surface of model]
ZB = ZO [Height of top surface of model]
NGMAX = 1001 [Number of grid points}
NGRID = 100 [Number of horizontal slices in model]
IP = 5 [Number of initial conditions]
IR = 0 [Number of coupled boundary conds]
lK = 10 [Number of output columns]
TOL = 0.01 [Relative error parameter]
PAR(l) = 1 [No defaults]
PAR(2) = 0
PAR(3) = 0 [No printed output for debugging]
PAR(4) = 1 [Values for X and Y supplied by user]
PAR(S) = 0 [Diff Eqs. and B.C.s are not linear]

* * ******* ***************************** *********** *** *** ****** **** *** ********** *** ****

** INITIAL GUESS **

RMM1 = NGRID - 1 [This part of the program divides the
magnetotail into evenly spaced Z(1)

DO 10 1 = 1, NGRID horizontal planes]
RIMI = I- I
Z(I) = ZA + RIM1/RMM1 * (ZB - ZA)

K(1, I) = NO [Estimated ion num density (N) at ht I]
K(2,I) = NO [Estimated electron num density at ht 1]
K(3, I) = 0 [Estimated electric field at ht I]
K(4,I) = Z(1) * (1/ ZB) [Estimated magnetic field at ht 1]
K(5, 1) = Z(l) * (No* Z)/ Z [Estimated charge conservation at ht 1]
K(6, 1) = 0 [Lagrangian equiv of n, at ht I]
K(7, 1) = 0 [Lagrangian equiv of n2 at ht I]
K(8,) 0 - 0 [Lagrangian equiv of Ez at ht I]
K(9, I) = 0 [Lagrangian equiv of Bx at ht I]
K(10, D) = 0 (Lagranfian equiv of Qz at ht I]

10 CONTINUE
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** CALL THE IMSL SUBROUTINE DVCPR **

CALL DVCPR (N, FCNI, FCNJ, FCNB, ZA, ZB, NGMAX, NGRID, IP, YR, TOL, Z, K, IK ABT, PAR,
WORK, IWORK, IER)

IF CIER .GT. 100) GOTO 200

** TRANSFORM DIMENSIONLESS VARIABLE TO REAL VALUES **

DO 800 1 - 1, NGRID [Real Value = Dimensionless value
x scaled quantity]

ZB(1) = Z() *7.s [Yields real magnetotail ht at ht I]
NIR) = K(1, I) *NRAw [Yields real ion num density at hr I]
N20) = K(2, I) * NRAw [Yields real elect num density at ht I]
EzR(1) = K(3, I) *Es [Yields real E fld strength at hlt ]
BYR(1) = K(4, I) *Bs [Yields real B fld strength at ht 1]

QR1) = K(5, I) * Qs

800 CONTINUE

FORMAT THE DVCPR OUTPUT

Once the system of ordinary differential equations are calculated by this program we want the
out put to be formatted as follows:

Value of Value of Value of Value of Value of
Interval Z at Ht fl) nR at Ht ) n2 at Ht (fl) E atHt fl Bat Ht M

Z (1) K (1, I) K (2, I) K (3, ) K (4, I) K (5, I)

Value of Value of Value of Value of Value of
Interval at Ht (1) A1 at Ht () A_, at Ht (I) A, at Ht (I) A. at Ht (1)

Z (1) K (S, I) K (6, I) K (7, I) K (8, 1) K (9, I)

(This data can be transferred into a plotting routine in order to make N-S profiles of the
desired parameters).



104

** CALCULATING THE MINIMUM TOTAL ENERGY (U) OF THE MAGNETOTAIL

DO 141 = 1, NGRID

Vy(l) = [-K(6, I) / C1 * GAM)] * [ K(1, I)1-GAM] * Bx + K(9, I)

or IV= - cyB-1

U(I) - 0.5 * K(1, D) * Vy(1)) 2 ] + 0.5 * K(3, l)2 + 0.5 * K(4, 1)2 + C1 * K(1, I)GAM +
C2 * K(2, I)GAM

7 2 +2
or [U(I) + C B• ÷ _ +C 1 (n 1 ) +C 2 (n 2 )']

2 2 2

ENERGYCI) = UoI)
WRITE (1, 145) 'Energy at Ht [z(1)] is [ENERGY(1)]'

SUM = 0
DO 1601 = 1, NGRID
SUMNEXT = ENERGY'O) + SUM
SUM = SUMN24T
UTOTAL = SUMNEXT

or I U ( TOTAL) = -8 ntv, + 2 + B !2+ ,( +7(%T
E 2 -2 2

orzA 2Y -2 2 c'1 ("i)' ÷c 2 (us)') }

WRITE (1, 170) 'The minimum value of U with a magnetotail ht of [ZB] is [UTOTAL]'

200 TYPE *, 'Run terminated because IER = [IER]'

END
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** SUBROUTINE FOR CAXULATING THE DIFFERENTIAL EQUATIONS **

SUBROUTINE FCNI (N, Z, K, KPRIME)
REAL X, K(N), KIRIMEtN), n1 , n2, E., Bx, Qz1, A 1, ½1, , • Q, kt vy
INTEGER N
COMMON/XXX/VAR, C, Cl, C2, GAM, G1 , G2 , ZA, ZB, DENSITY, B0, No

nI = K(1)
n2= K(2)
Ez fK(3)
Bx = K(4)

Qz = K(5)
L -- K(6)

A'2  fK(7)
-zfi K(8)
'x= K(9)

lz K(10)
vy = [+A 1 *G,*(n,)liAM*Bx-Ax] or [v y +- B I

KPRIME(C) = [G* Cn )2 GAM]

*[Ez-(Vy*Bx)] or n_ = .E. (v^) 2 -?("-vYBS)]

4ly

KPRIME(2) = _.G2 * (n2 )2-GAM Ez or a, = (n2 ) 2( E]

KPRIME(3)= [n,-n 2 ] or [S• = + (n -)]
&

KPJMEC4}( [ n * vJ or[ .÷(,v,);

KPRIME(5) = [n 1 ] or [ = +(n)]

az



106

KPRIME(6)= -(.5 * vy2  C * GAM * (n,)GAM-) or Ly - C"7 n
az 2

+ ( G, * (2 -GAMd) *(n,)lGAM +1 -
Cly

-(;L * vi,) - -U ) AQ]

KpRME(7) _ [C2 * GAM * (n2)GAM-] or [8) (2  2

+ [3.2 *G 2 *(2-GAM) + 1 -

c2y

*(n2)1OAM * E] x (;)'' (B 8 )

+ )bE + LB 1;

KPRIME(8) = [ -Ez- A,* G, *( n,) 2 AM1 or [- 1 - j)-

+ (.2 *G 2 * (n )2,GAM]+ 1;

KPRHWE(9) =. [ -Bx + )LI* G, n, )2GAM *y orBt],)-(v
az Cly

KPRIIM(10) 0] or ýn (0)]1;

RETURN
END
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SUBROUTINEFOR CALCULATING THE JACOBIAN MAhIM *

SUBROUTINE FCNJ (N, Z, K~, PD)

REAL Z, K(N), PD(NN), n,. n2, Ez, Bx, Qv)1 1 )-1, )- E, )-w %Q, V Y, .Iy, avy., a...
INTEGER N
COMMON/XUX/VAR, C, Cl, C2, GAM, GI, G2 . ZA, Z1 ,DENSITY, B0, No

n, = KM1
n2 = K(2)
Ez = K(3)

IX = K(4)
QZ = K(5)
11 = K(6)
'X2 = K(7)
;Lz = K(8)
Xx = K(9)
Iz = K(10)

VY= 1 1 ,(,)2GMB L or (v + )L(;n, (B)
CIY

DO0300 1 = 1,10
DO 310J = 1,10
PD(I, J) = 0.0
310 CON~IINUE
300 CONTINUE

.1 =+G 1 *,X1 *(1-GAM)] or [Y +l
5%~~ CC1 / Cn1 )GAM) * Bx] 5 l ,)

av C 8V
:= 1l + G, *X 1 *C(n, 1 )] or y .1 ,i+]

av. OrGM* v (n, )'-?(B.)
= C+G 1 *(n,) 4 ~* y or 7 + ,1

ay (-1.0] or y [... -- 1.0)]1;
OX.~ N
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( Ez- v *Bx) x (Eý - vIE,)

(G1 (n, )2-GAM * ( * B,)] (n,) 2 -y( Z B )

PD(l, 3) = [(G1 *(n,) 2cIGAM~ or [ a,,, n,)2- T

PD(l, 4) = [ -G1  n, )2G or r n C )2-y

* B OvB

Iv. aa

PD(l, 6) =[ -G,* (n,)2GAM *(Bx* c -)] or [& -I

PD(l, 9) = [ -G,*C(n, )2-GAM *(Bx*.z.) or "I--(i)?BX~lk

PD(2,2) [Jf-2 * (2 -GAM~) (n2)lGAP or[2 - y( TX 2 ) 1'(E 3)1

& c~2y

PDC2, 3) - [-G 2 (n 2 )]-A or [U - 2 - (;2-y
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PD(3, 1) = (+1.0] 1F or -0 +(1.0)1;

PD(3, 2) = (-1.0] or [.-k .(.0]

PD(4, 1) = [(n 1 * .... z)+ V, or n, aX - 1 )vi + Iv

PD(4, 4) = [(n,* .....z or B.! (a- I

PD(4, 6) = f n ,*......., or [!-(n 1 X Z)];
al1 I llal

By OB By
PD(4,9) = [n,* Ovz ] or (..... (n1 X......L

PD(5, 1) = ( +1.0] or +~ ( .
al
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PD(6, 1) = v [(Vv* or.l all a -(v X-a'v)

+ (G * A, *(2 -GAM)) 11 (2 y)

cdy

"*((IC-GAM) *(n,)-GAM x(1 -yXn,)'

"* (-Ez + vyyBx)) x ( -E. + v.B 1 )

alli x( -)

av

+(2,*A-(GAM) - A( 2- y)Ik

(n,''' B1)GA

+ (I *A,* ( -G")+ , (2 -y~u)

*-A 7v *1;

cly
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PD(6,6) -[(V* ..I) or [ v X -)

a 1  all.al

+ (GI * )L1 * (2 - GAM) +

cly

.(n, )k-GAM. *- * Bx) x (n, ) "-T( avL X B )
all al1

- CG1 * (2- GAM))(2 - y
ciy

(n )I'GAM (.Ez + vy* Bx) x ( n )'-( -E• + vB)

.(• a,,,
-(A ** 1)] -½ (B

a), O1  8k ]

PD(6,8) - [-1.0] or -(1.0)];
alk3

PD(6, 9) -- [(-v* .. L ) or [ . - -(v, X a L)
a,,, 0½, 0½,.

+ (G 1 * XI * (2 - GAM) + 1 1 2-y

Cly

n,( )I8AM, * .BBx x (n),",( XB)

av av
. * - VL y A _ _allk aB.

PD(6, 10) = [-1.01 or [ c -(1.0)1;
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PD(7,2) [(-l/G 2 )*(GAM-1) or -(Crxy - 1)

n2 (l)GAM-2 + ( ; 2 -G 2 ) x~,) + 12

C2Y

*(2 -GAM) *(1 -GAM) x(2 -yXl -y)

*(n2)-GM*Ez ] X (n Y .)1

PD(7, 3) = [G 2 *1 2 *(2-GAM) or( [, _2 A(2 y X n2)17

PD(7,7) = [G 2 *(2-GAM)or[2-yX2) Y %

PD(7,8) = [+1.0 1 or [-LI +(10)1
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PD(8, 1) = [.G 1 *ll*C2-GAM) or i: 1, (2 X__n_____

*(nii )I-GAM]i

PD(8, 2) = [G2 *1 2 *(2.GAM) or [ 12; )(2-y X n2 )''j
532y

n ~2 )I-GAM]

PD(8, 3) =[ .1.0] or .?a-(10]

PD(8, 6) = [.-G,*(n,) 2 -GAMW or k ( ;)2- T

PD(8,7) = [ G2 *(n 2 )
2 -GA or ['s (%~)2-Tj

C21(

PD(9, 1) = (G 1 *).*() 2 4I( 0~) o ) 4 l
5%l 52l cly

+ G, * A,*(2. GAM) + (2 - y X n) 1-7( v,
Cly

*(n, )l4GAM * v
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PD(9,4) - [.-1 + G1 *. 1 (n)MJ or . -- 1

a v
alll

av +. (L+ n )2-T ( v )
ax,, cly

PD(9,9) =[GI *A.1 * (n, ) 2,GM* 2. or + a,,_

RETURN

END
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** SUBROUTINE FOR ENTERING BOUNDARY CONDITIONS **

SUBROUTINE FCNB (N, KA, KB, F)
REAL KA(N), KB(N), F(N)
INTEGER N
COMMON/XXX/VAR, C, C1, C2, GAM, G1, G2, ZA, ZB, DENSITY, Bo, No

F(l) = KA(6) or I B.C••at sfc A is t 0 ];

F(2) = KA(7) or B.C. atsfe A is ).- 0 ];

F(3) = KA(3) or [BaC.at fcAis E - 0];

F(4) = KA(4) or [B..C tsfcAis B - 0];

F(S) = KA(S) Or [B.C. a sfe A is Q - 0 ];

F(6) = KB(6) or [B.C. at sfe B is 1 - 0 ];

F() = KB(7) or [ B.C. at de B is 12 -0 ];

F(8) = KB(3) Or [B.C. at sfc B is E_- 0 ];

F(9) = KB(4) - Bo or [B.C. at sfc B is B. - B ]

F(10) = KB(5)-(No*ZB) or [B.C atsfcBis Q% =+(noz)];

(Note: Surface A is the bottom surface of the model magnetotail which in this particular case
represents the center or neutral sheet of the earth's magnetotail. Surface B is the top of the
model magnetotail and represents the upper boundary of the earth's magnetotail.)

RETURN

END
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APPENDIX C: Model Data
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Multiplying Scaling Quantities by One.

These tables show the calculated values of each energy variable in the minimum total energy

equation. The value of each variable is added to the values calculated from the previous scaling

heiegt.

1. For no = 1.0; zo = 1.0; Ezo = 1.0; Bxo = 1.0; CO = 1.0.

Interatinf Enerav Parameters from 0.0 to 1.0.

I JOE UI nRlf_ n• E _ffz_ vl_ emia)

1 0.00 2.56 1.09 1.01 0.00 0.00 0.85 1.06
5 0.04 12.81 5.44 5.03 0.01 0.09 4.27 5.30
10 0.09 25.63 10.88 10.06 0.04 0.42 8.55 10.59
20 0.19 51.33 21.71 20.12 0.16 1.79 17.17 21.16
30 0.29 77.21 32.46 30.16 0.35 4.10 25.95 31.66
40 0.39 103.34 43.06 40.19 0.61 7.38 34.99 42.08
50 0.50 129.82 53.47 50.21 0.92 11.64 44.37 52.36
60 0.60 156.72 63.62 60.20 1.25 16.90 54.19 62.48
70 0.70 184.12 73.43 70.18 1.59 23.17 64.60 72.37
80 0.80 212.07 82.83 80.13 1.89 30.49 75.73 81.98
90 0.90 240.57 91.70 90.07 2.11 38.89 87.77 91.23
100 1.00 269.56 99.94 99.99 2.19 48.37 100.97 100.03

2. For no = 1.0; zo = 0.01; Ezo = 1.0; Bxo = 1.0; CO = 1.0.

Integrating Enerw Parameters from 0.0 to 0.01.

_L zfM' Ual) -RIM- 42L JEX _Rf __.Vl Temyfl)

1 0.00 5491 1.11 1.00 0.00 0.00 99.58 1.07
5 0.0004 27452 5.53 5.00 0.0001 0.11 497.91 5.36
10 0.0009 54866 11.06 10.00 0.0005 0.50 995.82 10.71
20 0.0019 109406 22.05 20.00 0.0020 2.11 1991.44 21.38
30 0.0029 163278 32.92 30.00 0.0045 4.83 2987.46 31.96
40 0.0039 216150 43.58 40.00 0.0077 8.63 3983.29 42.41
50 0.0050 267703 53.97 50.00 0.0115 13.50 4979.12 52.69
60 0.0060 317633 64.03 60.00 0.0156 19.39 5974.95 62.75
70 0.0070 365657 73.71 70.00 0.0195 26.28 6970.80 72.55
80 0.0080 411516 82.96 80.00 0.0228 34.13 7966.65 81.05
90 0.0090 454976 91.72 90.00 0.0252 42.88 8962.50 91.22
100 0.0100 495832 99.95 100.00 0.0260 52.49 9958.38 100.02
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3. For no = 1.0; zo = 0.1; Ezo - 1.0; Bxo = 1.0; CO = 1.0.

In~tepratinz Enermy Parameters from 0.0 to 1.0.

1..! 10 Ua) n-AIM- -Bf) -BA -A -Yy.MD. TemvflD

1 0.00 56.90 1.11 1.00 0.00 0.00 9.94 1.07
5 0.004 284.44 5.53 5.00 0.001 0.11 49.71 5.36
10 0.009 568.51 11.06 10.00 0.005 0.50 99.43 10.71
20 0.019 1133.92 22.05 20.00 0.020 2.11 198.86 21.37
30 0.029 1692.96 32.91 30.00 0.045 4.82 298.32 31.96
40 0.039 2242.46 43.57 40.00 0.077 8.62 397.80 42.41
50 0.050 2779.35 53.96 50.00 0.115 13.48 497.32 52.69
60 0.060 3300.67 64.03 60.00 0.155 19.36 596.89 62.74
70 0.070 3803.63 73.71 70.00 0.194 26.24 696.53 72.55
80 0.080 4285.63 82.96 80.00 0.228 34.09 796.25 82.05
90 0.090 4744.31 91.72 90.00 0.251 42.83 896.06 91.22
100 0.100 5177.52 99.95 100.00 0.260 52.44 996.00 100.02

4. For no = 1.0; zo - 10.0; Ezo = 1.0; Bxo - 1.0; CO - 1.0.

Inten-ting Enermv Parameters from 0.0 to 10.0.

-L zflj) UM -n1_ nflL Bl l Vy•_ Tem. T)

1 0.00 2.03 1.01 1.01 0.00 0.00 9.6x10" 1.01
5 0.405 10.15 5.04 5.04 9.0xlO"6 9.9x10"s 4.9x104  5.03
10 0.911 20.30 10.08 10.08 4.4x10"s 4.7110-4 1.1xlO 10.07
20 1.923 40.61 20.16 20.16 2.4x104 2.5x10"3 3.4x10 4  20.14
30 2.935 60.91 30.25 30.24 8.8x104 &SxlO81 9.3x10"3 30.21
40 3.947 81.21 40.33 40.32 2.8x10"$ 2.5x10"2 2.6x10"2 40.28
50 4.960 101.52 50.41 50.40 8.6x10"3 7.0x102 7.0410-2 So.3S
60 5.972 121.82 60.50 60.48 2.6x10"2 1.9x10"- 1.9x10"! 60.43
70 6.984 142.13 70.61 70.53 7.8x10"2 5.3x10"' 5.2x10" 70.51
80 7.996 162.50 80.75 80.53 2.2x10" 1.46 1.43 80.62
90 9.009 183.28 90.85 90.38 5.7101" 4.00 3.93 90.70
100 10.021 206.51 99.88 99.98 9.Sxl0"' 10.00 11.14 100.05



119

5. For no = 1.0; zo = 95.0; Ezo - 1.0; Bxo - 1.0; Co - 1.0.

Integratinf Enermy Parameters from 0.0 to 95.0.

.L za U() I nif.l -n2MI J•L ..BBxB _YVL TemOm

1 0.00 2.01 1.01 1.01 0.00 0.00 6.4x10"18 1.00
5 3.85 10.03 5.00 5.00 4.4x10"1 4.1X10-12 4.0x10"12 5.01
10 8.67 20.06 10.01 10.01 5.81"O'2 2.1x10.-1 3.5X10-12 10.02
20 18.30 40.12 20.02 20.02 S.2x1O"zz 1.4X10-10 &7x1102 20.04
30 27.94 60.18 30.03 30.03 -7.7x10" 4.7110"08 &3xlO" 30.06
40 37.57 80.24 40.04 40.04 9.6x10" 1.21xlO"9 2-5xlO10 40.08
50 4721 100.30 50.05 50.05 1.2xlO" 2.4xi0"9 5.9x10"0o 50.12
60 56.84 120.36 60.05 60.05 -4.9x10." 4.4xi0"9 1.8x10"9 60.13
70 66.47 140.42 70.06 70.06 -7.7x10"10 &4xlO"9 5.SxiO09 70.15
80 76.11 160.48 80.07 80.07 -2.0zx0"9 1.1x10"s 3.8x10"9 80.17
90 85.74 180.54 90.08 90.08 i.OxlO-s 1.1x10"4 1.x10 90.19
100 95.37 201.24 99.81 99.97 9.0xlO'2 1.66 1.84 100.01
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Typical Magnetotail Values.

6. a) For no = 1.0; zo = 1.0; Ezo = 3.64xI109; Bxo = 1.46xI10 3; C% = 4.59x10-5.

Integratini Energy Terms from 0.0 to 1.0.

-L zflL UMfl. n,al ia291 -IxfL B .YCI1 Temt )(1

1 0.00 9.3x10-S 1.00 1.00 0.00 0.00 1.2z10-3 4.6x10-S
5 0.04 4.6x10-4 5.01 5.01 7.8x10-8 1.3O10 62X10-3 2.3xI104
10 0.09 9.3x10-4 10.02 10.02 3.5x10-7 5.6x10-4 1.24102 4.6x10-4
20 0.19 1.9xI103 20.04 20.04 1.54106 2.4xIO-3 2.5110-2 9.24104
30 0.29 2.8xI103 30.06 30.05 3.5x10-6 5.5X10-3 3.84102 1.4x10-3
40 0.39 IWO10 40.07 40.07 6.4xI106 9.9X103 5.1110-2 1.8XI103
50 0.50 4.6xl103 50.08 50.08 I.0110-S 1.6110-2 6.4010-2 2.3x10-3
60 0.60 5.6X10-3 60.08 60.08 I.X1- 2.3xI102 7.9xl102 2.8X10-3
70 0.70 6.5x10-3 70.08 70.07 2.24i05 3.2x1102 9.4xI102 IWO10
80 0.80 7.5XIO-3 80.07 80.07 IWOxO 4.2x102 1.1110.1 3.7X10-
90 0.90 8.0x104 90.04 90.04 4.1x10O 5.4x102 1.3x10-' 4.1X10-3
100 1.00 9.3x10-3 99.99 99.99 S.2xI10S 6.7x10.2 1..5x101 4.6xI0-3

b) For

0 UY2 + 2 + + Cu2' + CY'

Enemay Variables! Percentaxe of Urn.

I _gL Ua) gna -JL 2SnaCL Sn2L
C") M% M% M% %

1 0.00 9.,ftl10$ 0.08 0.00 0.00 0.50 0.50
5 0.04 4.65xI104 0.08 1.94X11012 5.8I- 0.50 0.50
10 0.09 9.30xI104 0.08 9.29X10-12 2.41xI105 0.50 0.50
20 0.19 1.864103 0.08 4.12110-" 1.~I- 0.50 0.50
30 0.29 2.79z10-3 0.08 9.90x10'11 2.45x10-4 0.50 0.50
40 0.39 3.72xI103 0.09 1.88x10 10  4.48x10-4 0.50 0.50
50 0.50 4.65xl103 0.09 3.19110-10 7.18xz104 0.50 0.50
60 0.60 S.59xlo- 0.09 5.04xI1010 1.O6xI103 0.49 0.49
70 0.70 6.Sh10O- 0.10 7.62x10.10 1.49xI103 0.49 0.49
80 0.80 7.4SxI103 0.10 1.12x1109 2.01xI103 0.49 0.49
90 0.90 8.39X10-3 0.11 1.634109 2.63xI103 0.49 0.49
100 1.00 9.334103 0.12 2.21xI109 3.384103 0.49 0.49

The value for the minimum total energy of this model system is 9.33410 3.
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Typical Magnetotail Values.

7. a) For no - 1.0; zo 2.0; Ezo - 3.64x1(Y 9; Bxo - 1.46x10-3 ; C0 - 4.59x10-S.

Intefratini Enemfy Terms from 0.0 to 2.0.

- fL zM uLD.. ..nifil .n,(') .LflL -4a1 M~ Tempfl)

1 0.00 9.2X10-5 1.00 1.00 0.00 0.00 4.0x1O-4 4.6x1O-S
5 0.08 4.6x1O-4 5.01 5.01 1.6x1O-8 &1xI0-S 2.0z10-3 2 .3xI1 0 A
10 0.18 9.2xl104 10.02 10.02 7.4x10-8 3.7x1O-4 4.0x10-3 4.6x1O-4
20 0.38 1.8X10-3 20.03 20.03 3.2x10-7 1.6x10'3 8.2x10-3 9.2xl104
30 0.59 2.8xI103 30.04 30.04 7.9x10e 3.6x10-3 1.31102 1.4xl103
40 0.79 IWO10 40.06 40.06 1.6xI106 6.7x104 1.8xI102 1.8xIO(3

50 0.99 4.6xI103 50.07 50.07 IWO10 LW1x10 2.3W0 2.3x10-3
60 1.19 5.5XI103 60.07 60.07 4.6x10-6 1.6xI102 3.0110-2 2.8x10-3
70 1.40 6.5X10-3 70.07 70.07 7.3xI10 4  2.3110.2 3.8xI102 3.2xI103
80 1.60 7.4x10-3 80.06 80.06 LWO10 3I2W0O 4.81102 3.7X103
90 1.80 8.3x10-3 90.04 90.04 1.8x10-S 4.2x10.2 5.9x10.2 4.lx1O-3

100 2.00 9.2x1103 99.99 99.99 IWO10 5.6x10.2 7.3x10-2  4.6x10-3

b) For

U ( I ) 2 + 2 + 2 + C l + C

Enemyv Variables' Percentatte of U(fl.

(%)) (%)) (%).2/ (%)a (%)_ Q l _ &

1 0.00 9.29X10 5S 8.7x10-4 0.00 0.00 0.50 0.50
5 0.08 4.61x10-4 8.7x10-4 8 63XI1 0 H 2.144106 0.50 0.50
10 0.18 9.22x10-4 8.8x10 4  4. 19X10-13 1.02X10-S 0.50 0.50
20 0.38 1.84XI103 9.1X10-4 1.9911012 4.S55z10' 0.50 0.50
30 0.59 2.77x10-3 9.8XI104 5.41X11012 1.09X1O-4 0.50 0.50
40 0.79 3.69x10-3 I.X1- 1.21X10-11  2.08xI104 0.50 0.50
50 0.99 4.614103 1.240-3 2.53x10O-" 3.52x1 4  0.50 0.50
60 1.19 5.53x10'3 1.0~10-3 5.11x10-" S.564104 0.50 0.50
70 1.40 6.46x10W3 1.710 1.0241010 8.42x10 0.50 0.50
80 1.60 7.39410- 2.14lO 3  2.05xl1010 1.24xI0-3 0.50 0.50
90 1.80 8.31x10-3 2.7xl103 4.14xI1010 1.80xI103 0.50 0.50
100 2.00 9.24xI10 3  3.4x10O 8.0511010o 2.57x1073 0.50 0.50

The value for the minimum total energy of this model system is 9.244102.
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Typical Magnetotail Values.

8. a) For no = 1.0; zo = 3.0; Ezo = 3.64xl109; BX3 - 1.46x10-3; C0 - 4.S9x110S.

Integrating EnfrM Terms from 0.0 to 3.0.

-L zflL 20)W -nflLflL -% Ezfll BAz V-fl Temyfl)

1 0.00 9.2x10-5 1.00 1.00 0.00 0.00 1.4x10-4 4.6x10-S
5 0.12 4.6x10-4 5.01 5.01 IWxO~ 4.4x10-5  7.3x10-4 IWO10
10 0.27 9.2x10-4 10.01 10.01 I.x1- 2.0x10-4  I.xI 4.6x10-4
20 0.58 1.8X10-3 20.02 20.02 6.8x1048 8.6x10-4  IWO10 9.2x104
30 0.88 2.8x10-3 30.03 30.03 1.8xl107 2.0x10-3 4.9xl103 1.4xI103
40 1.18 3.74103 40.04 40.04 3.9xl107 3.9x10-3  7.3x10-3 1.8z10
50 1.49 4.6x10-3 .50.05 50.05 7.9xI107 6.5x103 1.0110-2 2.3x10-3
60 1.79 .5.5X10-3 60.06 60.06 1.5X10-6 1.Oxl 2  1.4x10-2 2.8X10-3
70 2.10 6.44103 70.06 70.06 2.8x106 1.5x1102 1.9xI102 3.2XIo-3
80 2.40 7.4410 3 80.06 80.06 S.3x10-6 2.24102 2.64102 3.7x10-3
90 2.70 8.34103 90.04 90.04 9.84106 IWO10 3.64102 4.1xI103
100 3.00 9.24103 99.99 99.99 1.7x105S 444x0-2  4.9x10.2 4.64103

b) For

0 2 2 2T Q~

Enemyv Variables' Percentage of Ua).

(%)) () _a) (%2

1 0.00 9.21x10' 1.140-4 0.00 0.00 0.50 0.50
5 0.12 4.60x10-4 1.1x10 3.34xl10's 6.3240o7 0.50 0.50
10 0.27 9.21X1O-4 1.2u10-4 1.67X10'14 3.044106 0.50 0.50
20 0.58 1.84XI0-3 1.3X10-4 8.96X10-14  1.39110-S 0.50 0.50
30 0.88 2.76xI103 1.5x10-4 2.944013' 3.51x10-S 0.50 0.50
40 1.18 3.684103 1.9xI104 8.S4X,10'3 7.17Xz10S 0.50 0.50
50 1.49 4.60x1O-3 2.54104 2.43110-12 1.33xI104 0.50 0.50
60 1.79 5.53x10'3 3.5x10-4 6.94110-12 2.33xz104 0.50 0.50
70 2.09 6.45xI103 5.4- 2.0241011 3.994104 0.50 0.50
80 2.40 7.37410 3 7.9X104 '5.96X10-11 6.70x10-4 0.50 0.50
90 2.70 8.30xI103 1.34103 1.79110.10 1.13xI103 0.50 0.50
100 3.00 9.224103 2.Ox1103 5.28110.10 1.91X10-3 0.50 0.50

The value for the minimum total energy of this model system is 9.22xl103.
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Typical Magnetotail Values.

9. a) For no = 1.0; zo = 4.0; Ezo 3.64x10-9 ; Bx0 = 1.46x10"3; C0 = 4.59x10-5.

Integrating Enerfzv Termns from 0.0 to 4.0.

- L z .1111. .n~fL ..n2flL 1-z9IL .. xlL YIWL Temp 0)

1 0.00 9.2x10-5 1.00 1.00 0.00 0.00 5.3xI10S 4.6x10-5

5 0.16 4.6xI104 5.00 5.00 5.8x10-10 2.2xI10S 2.7x10-4  2.3x10-4
10 0.36 9.2xl104 10.01 10.01 2.7x10-9 9.8x10-S 5.410-4 4.6xI104
20 0.77 1.8xz103 20.02 20.02 1.3O10 4.3x10-4 1.2X10-3 9.2X10-4

30 1.17 2.8xl103 30.03 30.03 3.9x10-8 1.X1 2.0x10-3 1.x103
40 1.58 3.7xI10 3 40.03 40.03 9.8x10-8 2.1jX10-3 3. 1XIO3 1. 8X103
50 1.98 4.6xl103 50.04 50.04 2.3xI10 7  IWO10 4.8X10-3 2.3x10-3
60 2.39 5.xI- 60.05 60.05 S.3x10-7 6.0x10-3 7.2x10-3  2.8xI10 3

70 2.79 6.4x10-3 70.05 70.05 1.2X10-6 9.6X103 M.xIO-2  3.2xI103
80 3.20 7.4x10- 3 80.05 80.05 2.7x10-6 1.5xl102 1.6x10-2 3.7x10-3
90 3.60 8.3x10-3 90.04 90.04 6.1x10-6 2.3x10-2 2.5110-2 4.1jX10-3
100 4.00 9.2X10-3 99.99 99.99 1.3x10 5S 3.5110-2 IWO10 4.6x10-3

b) For

U(I)=rL - IY2 + .+B.+2 , ý0 -2 2 2 a 7

Eniergy Variables' Percentage of Urn).

1 0.00 9.20x10 5S Lflf 0.00 0.00 0.50 0.50
5 0.16 4.60xlO410 Sx O 1.09X10-16 1.SX,0 7  0.50 0.50
10 0.36 9.20X10-4 1.6XI10S 5.65X11016 7.35xl107 0.50 0.50
20 0.77 1.84X10-3 1.9x10 3..56xl1015 3.50xI10 4  0.50 0.50
30 1.17 2.76xI103 2.5x10-S 1.S1X1lO' 4  9.47x10-6 0.50 0.50
40 1.58 3.68xl103 3.7x10-S 6.07x10'14 MUMS10 0.50 0.50
50 1.98 4.60x10-3 6.0xI10S 2.49X11013 4.43x10-S 0.50 0.50
60 2.39 S.52X10-3 .O,- 1.05110-12 8.96xI105 0.50 0.50
70 2.79 6.44x10-3 2.0x10-4  4.56X10-12 1.8Ox1O-4 0.50 0.50
80 3.20 7.36x10-3 IWO10 2.OlxlO-11  3.60x10-4 0.50 0.50
90 3.60 8.29x1103 7.5x10-4 9.04x10-" 7.27x10-4 0.50 0.50
100 4.00 9.22X10-3 1.X1 4.15110-10 1.48x10-3 0.50 0.50

The value for the minimum total energy of this model system is 9.22X10-3.
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Typical Magnetotail Values.

10. a) For no - 1.0; zo - 5.0; Ezo = 3.64xl109; Bxo - 1.46x10-3; C = 4.59xl10S.

Integratinx Enervy Terms from 0.0 to 5.0.

-L zal u(Dl nJha .n,(') fEzal .. flL -34afl Temt)M

1 0.00 9.2x105S 1.00 1.00 0.00 0.00 1.9xI0-5 4.6xI10S
5 0.20 4.6x10-4 5.00 5.00 9.7x1011 9.9x10-6 9.8x10-S 2.3xl10 4

10 0.46 9.2xI10 4 10.01 10.01 4.7xI0-' 0  4.Sx10-s 2.0z10 - 4.6x10-4
20 0.96 1.8xI103 20.02 20.02 2.5xl109 2.0x10-4 4.5xl104 9.2xl104
30 1.47 2.8x10-3 30.03 30.03 8.4xlo-9 5.xI 8.2xI104 1.4X10-3

40 1.97 3.7xl103 40.03 40.03 2.5x1048 1.X1 1.4X10-3 1.8X103
50 2.48 4.6X10-3 50.04 50.04 6.9X10-8 2.0x10-3 2.3x10-3 2.3x10-3
60 2.99 5.5x10-3 60.05 60.05 1.9xi0-7 3.5x10-3 3 .9X103 2.8x10-3
70 3.49 6.4x10-3 70.05 70.05 5.3x10-7  6. jX10'3 6.5x10-3 3.2xI103
80 4.00 7.0x10-3 80.05 80.05 1.5xl106 1.010. 1.x1102 3.7x10-3
90 4.50 8.3x10-3 90.04 90.04 4.0110-6 1.71102 1.8xl102 4. IX10-3

100 5.01 9.2X10-3 99.99 99.99 1.0xI0-5 2.9xI102 3.010 4.6x10-3

b) For

U () E - +- +- +n 01+ Qi~'
0 2 2 2

Energy Variables' Percentaize of UI).

I Za)lj ..L~f). _ 1VI. E 2,2z! /2 /2 ~ Cn

1 0.00 9.20x1105 IWO10 0.00 0.00 0.50 0.50
5 0.20 4.60xI104 IWO10 3.21x11018 3.19x10-8 0.50 0.50
10 0.46 9.20xl104 2.2xI106 1.72XI10'7 1.57X10-7 0.50o 0.50
20 0.96 1.84x10-3 2.8x1106 1.33x10'16 7.89t10'7 0.50 0.50
30 1.47 2-76X10-3 4.4x10-6 7.64X11016 2.33xI106 0.50 0.50
40 1.97 3.68xl103 8.0x1106 4.4Sx10-'5 5.93x10 46 0.50 0.50
50 2.48 4.60x10-3 1.6x10-S 2.69x10-14 1.42X10-S 0.50 0.50
60 2.99 s.s2X1o-3 IWO1~ 1.70X10-'3 3.39x10-S 0.50 0.50
70 3.49 6.4I- 8.4X10-S 1.10110.12 8.13xI0-S 0.50 0.50
80 3.99 7.36x10-3 2.0110-4 7.30110.12 1.97X10-4 0.50 0.50
90 4.50 8.28xI103 4.9x10-4 4.90110.11 4.84110-4 0.50 0.50
100 5.00 9.21XI103 1-2x10-3 3.SW10~1 1.20x1103 0.50 0.50

The value for the minimum total energy of this model system is 9.20xI103.
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Typical Magnetotail Values.

11. a) For no = 1.0; zo = 10.0; Ezo = 3.64xl109; Bxo = 1.46x10,3; C0 = 4.S9xl10S.

Intefgratiniz Energy Terms from 0.0 to 10.0.

-L zD MuXI -niflL gnfflL -Ezflh VR -yfL TemiO)(

1 0.00 9.2x10-5 1.00 1.00 0.00 0.00 1.3xl0- 7  4.6x105S
5 0.40 4.6x10-4 5.00 5.00 3.8X10-13  1.310-7  6.7x10-7 2.3xl10 4

10 0.91 9.2x10-4 10.01 10.01 4.1I110-13 6.3xI107 1.5x10-6 4.6x10-4
20 1.92 1.8xl103 20.02 20.02 1.7X10-12  3.4x1046 4.6x1046 9.2x10-4
30 2.94 2.8xI0-3 30.03 30.03 4.7x10- 12  1.1X10-S 1.3x10-S 1.4xIO-3
40 3.95 3.7x10-3 40.03 40.03 2.0x10-" 3.3x10-- 3.5x10--l 1.8X10-3

50 4.96 4.6x10-3 50.04 50.04 2.111010o 9.4x10-5  9.6xI105  2.3x10-3
60 '5.97 5.5X10-3 60.05 60.05 1.7x10 9  2.6x10-4 2.6x104  2.8x10-3
70 6.98 6.4x10- 3 70.05 70.05 1.3x10-8 7.2x10-4 7.2xl104 3.2X10-3

80 8.00 7.4x10-3 80.05 80.05 9.6x10 48 2.0xI0-3 2.0x10-3 3.7X,0o3
90 9.00 8.3xI0-3 90.04 90-04 7. 1X10 7  5.5X10-3  5.SXlO 3  4.1X10-3
100 10.02 9.2X10-3 99.99 99.99 5.2X10-6 1..5x10.2 1.5110-2 4.6x10-3

b) For

In,2 B2 2
U (I) E +v, _ +5 _ B h T + c02'

0 2 2 2

Enerity Variables' Percentaxe of Ufl).

Z(a. Iun. _RIYV~ 2 ,2 _Ax/2 S 1 CnT gz
(sM M% Mq) % (%)

1 0.00 9.20x10 5S 9.lxlO1 1I 0.00 0.00 0.50 0.50
5 0.40 4.60x10-4 9.6x1011  7.88x10- .5.80X10-12 0.50 0.50
10 0.91 9.20x10-4 1.2x10.10 1.91X10-21 3.18110.11 0.50 0.50
20 1.92 1.84XI10 3 3.4110-10 4.78110'21 2.4,5x10.10 0.50 0.50
30 2.94 2.76x10-3 I.x1 5.72xl1021 1.42xl109 0.50 0.50
40 3.95 3.68x10-3 8.4x10-9  1.54x20~ 8.26x10-9 0.50 0.50
50 4.96 4.60xz103 5.1X10-8 5.44X10'19 5.03x10 48 0.50 0.50
60 5.97i S.52X1o-3 3.2110e 2.69xl1017 3.18xl107 0.50 0.50
70 6.98 6.44x103 IWO10 1.33x10-'s 2.07x10-6 0.50 0.50
80 8.00 7.3.5x10-3 1.4x105S 6.84xI10'4 1.37x10-S 0.50 0.50
90 9.01 8.28xI0-3 9.3xI0-S 3 .91X10-12 9.24x10-5  0.50 0.50
100 10.02 9.20110-3 6.3xI104 2.6811010o 6.30xl104 0.50 0.50

The value for the minimum total energy of this model system is 9.20x10-3.
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